Abstract:
A printed wiring board is provided with a base material, which has at least one wiring and is composed of an adhesive insulating base material and a conductive layer formed on one plane of the insulating base material; a penetrating electrode which is connected to the conductive layer, penetrates the insulating base material and is composed of a conductive paste; and an IC chip having a rewiring section. An IC chip is embedded in an interlayer adhesive material of the base material having the wiring, by connecting the rewiring section with the penetrating electrode. A supporting substrate is arranged on a plane opposite to the rewiring section of the IC chip through the adhesive layer, and the rewiring section and the base material having the wiring constitute a rewiring layer. Therefore, the multilayer printed wiring board having fine components mounted thereon is provided by simple process without increasing the cost and deteriorating the yield.
Abstract:
At least one base material having a wiring circuit that has been formed into a predetermined outer shape is bonded to a motherboard. The motherboard wiring board and the base material having a wiring circuit are electrically connected to each other at least one portion through an inner via hole. The outer shape of the base material having a wiring circuit is smaller than the outer shape of the motherboard, with the base material having a wiring circuit having an island shape on the motherboard.
Abstract:
A mixture of titanium dioxide and an oxide or carbonate of barium includes one or more transition metal elements selected from the group of V, Cr, Mn, Fe, Co, Ni and Cu, in the amount of 2 ppm or more. This mixture is used as a starting material. The mixture is heated to a predetermined temperature to make a melt. Then, a seed crystal of BaTiO3 is brought into contact with the melt under an environment with a low oxygen partial pressure of 0.02 atm. or less. From this state, the above melt is slowly cooled to grow a single crystal on the seed crystal. The thus obtained single crystal is heated in a temperature of 600 .degree.C or more, under an oxidizing environment with its oxygen partial pressure more than 0.1 atm.
Abstract:
At least one base material having a wiring circuit that has been formed into a predetermined outer shape is bonded to a motherboard. The motherboard wiring board and the base material having a wiring circuit are electrically connected to each other at least one portion through an inner via hole. The outer shape of the base material having a wiring circuit is smaller than the outer shape of the motherboard, with the base material having a wiring circuit having an island shape on the motherboard.
Abstract:
A mixture of titanium dioxide and an oxide or carbonate of barium includes one or more transition metal elements selected from the group of V, Cr, Mn, Fe, Co, Ni and Cu, in the amount of 2 ppm or more. This mixture is used as a starting material. The mixture is heated to a predetermined temperature to make a melt (2). Then, a seed crystal (7) of BaTiO is brought into contact with the melt under an environment with a low oxygen partial pressure of 0.02 atm. or less. From this state, the above melt is slowly cooled to grow a single crystal on the seed crystal. The thus obtained single crystal is heated in a temperature of 600 DEG C or more, under an oxidizing environment with its oxygen partial pressure more than 0.1 atm.
Abstract:
A mixture of titanium dioxide and an oxide or carbonate of barium includes one or more transition metal elements selected from the group of V, Cr, Mn, Fe, Co, Ni and Cu, in the amount of 2 ppm or more. This mixture is used as a starting material. The mixture is heated to a predetermined temperature to make a melt (2). Then, a seed crystal (7) of BaTiO is brought into contact with the melt under an environment with a low oxygen partial pressure of 0.02 atm. or less. From this state, the above melt is slowly cooled to grow a single crystal on the seed crystal. The thus obtained single crystal is heated in a temperature of 600 DEG C or more, under an oxidizing environment with its oxygen partial pressure more than 0.1 atm.
Abstract:
A mixture of titanium dioxide and an oxide or carbonate of barium includes one or more transition metal elements selected from the group of V, Cr, Mn, Fe, Co, Ni and Cu, in the amount of 2 ppm or more. This mixture is used as a starting material. The mixture is heated to a predetermined temperature to make a melt (2). Then, a seed crystal (7) of BaTiO is brought into contact with the melt under an environment with a low oxygen partial pressure of 0.02 atm. or less. From this state, the above melt is slowly cooled to grow a single crystal on the seed crystal. The thus obtained single crystal is heated in a temperature of 600 DEG C or more, under an oxidizing environment with its oxygen partial pressure more than 0.1 atm.
Abstract:
A base for multilayer wiring boards in which a conductive layer (112) forming a wiring pattern is provided on one side of an insulating base (insulating resin layer (111)), and an adhesive layer (113) for interlayer adhesion is provided on the other side, and a through hole (114) extending through the conductive layer, the insulating base, and the adhesive layer is filled with a conductive resin composition (115) for interlayer electrical connection. The diameter of the conductive layer portion (114b) of the through hole is smaller than those of the insulating base portion and the adhesive layer portion (114a). The electrical connection between the conductive resin composition and the conductive layer is ensured through the back (112a) of the conductive layer.
Abstract:
A configuration according to the invention includes at least one wired base material configured with an insulating base material having an adhesion property, and an electric conductive layer formed on one side of the insulating base material, a plugging electrode made of an electric conductive paste, connected to the electric conductive layer, and penetrating the insulating base material, and an IC chip having a re-wiring portion, the IC chip being buried in an interlayer binding material, with the re-wiring portion connected to the plugging electrode, having a supporting board disposed on an opposite side to the re-wiring portion of the IC chip, with an adhesion layer in between, and having a re-wiring layer configured with the wired base material and the re-wiring portion. According to the invention, therefore, it is allowed to provide a multi-layer printed wiring board with highly defined components implemented, allowing for a fabrication by facile processes, without causing, among others, increased costs or decreased yields.