Abstract:
PROBLEM TO BE SOLVED: To provide a storage system which enables memory density of several hundred Gb/inch2 without receiving mechanical wear. SOLUTION: The method of using a magnetizable memory medium (10), exposing the memory medium to an artificial external magnetic field H coupled externally to the memory medium, simultaneously applying heat extremely locally thereto at magnitude of a bit size in bit writing and making the external magnetic field locally greater than the holding magnetic field (dependent upon temperature) in locations (32) where the heat is applied is proposed. Further, two-dimensional arrays of cantilever chips (24) are advantageously used in this storage system. The respective chips act as heat sources when activated by current. The current flows in the resistance passages in the chips (24) and generates the necessary temperature in the small memory medium locations (32) where the writing of the bit is planned. This temperature is made closer to the Curie temperature or compensation temperature of the magnetic material.
Abstract:
PROBLEM TO BE SOLVED: To provide a deposition method for a non-volatile resistance switching memory. SOLUTION: The method for depositing a switching material can be switched between persistent conductive states. The microelectronic device is a non-volatile resistance switching memory comprising the switching material for storing digital information. The method comprises a step of depositing the switching material by a standard CMOS deposition technique at a temperature lower than 400°C. COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To provide a capping layer, a photoelectron device having a capping layer with which it is easy to adjust an optical property, a manufacturing method of the photoelectron device and a method to specify a refractive index of the capping layer. SOLUTION: The photoelectron device is equipped with photoelectron members (12, 14, 16) to emit light, a light emission surface (22) and a capping layer (18) on the light emission surface (22). The capping layer (18) contains a mixture of a first material having a first refractive index and a second material having a second refractive index. COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To realize a pinning layer which is capable of causing a strong pinning effect at a high operating temperature by binging an anti-ferromagnetic layer into direct contact with a ferromagnetic layer so as to induce an exchange bias in the ferromagnetic layer. SOLUTION: A GMR sensor 10 includes a substrate 11 of glass or the like, and a first layer of soft ferromagnetic matter, a second layer 14 of non-magnetic metal matter, a third layer 16 of ferromagnetic matter which is preferably hard magnetic so as to fix its magnetization at a prescribed position, and a fourth layer 18 of anti-ferromagnetic matter functioning as a pinning layer 18 are deposited on the substrate 11. Either or both of the ferromagnetic layers 12 and 16 are formed of Co, cobalt alloy, or other ferromagnetic matter. The second layer 14 of anti-magnetic metal matter functioning as a spacer layer may be formed of precious metal such as Cu, silver or the like. The third layer 16 is fixed or pinned down by the pinning layer 18. Therefore, a magnetic device which includes the structure mentioned above can be normally used in a high-operating temperature environment.
Abstract:
Die magnetische Direktzugriffsspeicher-(MRAM-)Einheit weist Lesewortleitungen, Schreibwortleitungen und Bitleitungen sowie eine Vielzahl von Bitspeicherzellen auf, die durch die Lesewortleitungen, die Schreibwortleitungen und die Bitleitungen untereinander verbunden sind, wobei jede der Bitspeicherzellen ein Element mit einer festen ferromagnetischen Schicht und ein Element mit einer freien ferromagnetischen Schicht aufweist, die durch ein dielektrisches Tunnelbarrierenelement voneinander getrennt sind, wobei jede der Schreibwortleitungen und eine entsprechende Anzahl der Elemente mit einer freien ferromagnetischen Schicht als eine einzige durchgehende ferromagnetische Leitung gebildet sind.
Abstract:
The magnetization reversal method involves applying external magnetic field to a magnetized layer (3) such that magnetization processes around external magnetic field. The external magnetic field is maintained until precision suffices to effect magnetization reversal. Independent claims are also included for the following: (a) magnetization reversal device;; (b) in plane magnetized method; (c) magnetic recording system.
Abstract:
A method of generating or modifying patterns of topically specific magnetic modifications in an at least potentially ferromagnetic surface comprising the step of subjecting said surface to a controlled impact of energized subatomic particles, preferably in the form of electron radiation, directed at said surface for producing a predetermined pattern of discrete magnetized areas on said surface. The method serves to increase the density of magnetically coded information on magnetic media, such as hard discs.
Abstract:
Magnetische MRAM- Einheit (10), aufweisend:- Bitleitungen (21 bis 23), Schreibwortleitungen (31 bis 33), Lesewortleitungen (41 bis 43),- eine Vielzahl von Bitspeicherzellen (51 bis 53), die durch die Bitleitungen (21 bis 23), die Schreibwortleitungen (31 bis 33) und die Lesewortleitungen (41 bis 43) miteinander verbunden sind, wobei jede der Bitspeicherzellen (51 bis 53) ein festes ferromagnetisches Schichtelement (61 bis 63) und ein freies ferromagnetisches Schichtelement (71 bis 73) aufweist, die durch ein dielektrisches Tunnelbarrierenelement (81 bis 83) voneinander getrennt sind,- wobei die Bitspeicherzellen (51 bis 53) als Matrix mit Zeilen und Spalten angeordnet sind, wobei die in einer Zeile angeordneten Bitspeicherzellen (51 bis 53) mit einer Schreibwortleitung (31) verbunden sind, wobei die eine Schreibwortleitung (31) und die freien ferromagnetischen Schichtelemente (71 bis 73) der Bitspeicherzellen (51 bis 53) der einen Zeile als eine einzige durchgehende ferromagnetische Leitung (91) gebildet sind,- dielektrische Schichtelemente (101 bis 103), wobei jedes der dielektrischen Schichtelemente als kapazitives Element jeweils zwischen einer der Bitleitungen (21 bis 23) und einer der durchgehenden ferromagnetischen Leitungen (91 bis 93) angeordnet ist und wobei das kapazitive Element so konfiguriert ist, dass es bei Schreiboperationen einen Isolator bildet und bei Leseoperationen einen Leiter bildet, und- einen Impulsgenerator zum Erzeugen eines Strompulses durch die Bitleitung, die Bitspeicherzelle und die Lesewortleitung zum Lesen des Status der Bitspeicherzelle.
Abstract:
A magnetic random access memory (MRAM) device has read word lines, write word lines, bit lines, and a plurality of memory bit cells interconnected via the read word lines, the write word lines and the bit lines. Each memory bit cell has a fixed ferromagnetic layer element and a free ferromagnetic layer element separated by a dielectric tunnel barrier element. Each write word line and a respective number of free ferromagnetic layer elements are formed as a single continuous ferromagnetic line.
Abstract:
The magnetization reversal method involves applying external magnetic field to a magnetized layer (3) such that magnetization processes around external magnetic field. The external magnetic field is maintained until precision suffices to effect magnetization reversal. Independent claims are also included for the following: (a) magnetization reversal device;; (b) in plane magnetized method; (c) magnetic recording system.