Abstract:
PROBLEM TO BE SOLVED: To provide a nanowire mesh of a single gate inverter and a method of fabricating the same. SOLUTION: The field effect transistor (FET) includes a plurality of device layers disposed vertically in a stack, each device layer has a source region, a drain region and a plurality of nanowire channels 110 connecting the source region and the drain region, wherein the source and drain regions of one or more of the device layers are doped with an n-type dopant or a p-type dopant. The FET inverter further includes a common gate 150 surrounding the plurality of nanowire channels, a first contact 156 to the source regions of the one or more device layers doped with the n-type dopant, a second contact 158 to the source regions of the one or more device layers doped with the p-type dopant, and a common third contact 152 to the drain regions of each of the device layers. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
A multiport bridge includes a plurality of Bridge Port Frame Handler (BPFH) units (1'',2'',...N'') coupled through a Source Routing bus and a Transparent Bridge Bus to a microcontroller (20), a Packet Memory (12) and a Transparent Bridge Control Management System (TBCMS) (26). Each Bridge Port Frame Handler unit receives Frame from its attached LAN, forwards selected portions of Source Routing Frames to other Bridge Port Frame Handlers for further processing. Likewise, selected portions of Transparent Bridge Frames are forwarded to the TBCMS whereat routing information and signature information is extracted and returned to the forwarding BPFH unit for further processing.
Abstract:
A multiport bridge includes a plurality of Bridge Port Frame Handler (BPFH) units (1'',2'',...N'') coupled through a Source Routing bus and a Transparent Bridge Bus to a microcontroller (20), a Packet Memory (12) and a Transparent Bridge Control Management System (TBCMS) (26). Each Bridge Port Frame Handler unit receives Frame from its attached LAN, forwards selected portions of Source Routing Frames to other Bridge Port Frame Handlers for further processing. Likewise, selected portions of Transparent Bridge Frames are forwarded to the TBCMS whereat routing information and signature information is extracted and returned to the forwarding BPFH unit for further processing.
Abstract:
A multiport bridge includes a plurality of Bridge Port Frame Handler (BPFH) units (1'',2'',...N'') coupled through a Source Routing bus and a Transparent Bridge Bus to a microcontroller (20), a Packet Memory (12) and a Transparent Bridge Control Management System (TBCMS) (26). Each Bridge Port Frame Handler unit receives Frame from its attached LAN, forwards selected portions of Source Routing Frames to other Bridge Port Frame Handlers for further processing. Likewise, selected portions of Transparent Bridge Frames are forwarded to the TBCMS whereat routing information and signature information is extracted and returned to the forwarding BPFH unit for further processing.
Abstract:
A generic high bandwidth adapter providing a unified architecture for data communications between buses, channels, processors, switch fabrics and/or communication networks. Data is carried by data stream packets of variable lengths, and each packet includes a header control information portion required by communication protocols used to mediate the information exchange, and normally a data portion for the data which is to be communicated. The generic high bandwidth adapter comprises a processor subsystem including a processor for processing the header control information portions of data packets. The processor has access to data packets stored in a packet memory which stores data packets arriving at four generic adapter input/output ports. The packet memory is segmented into a plurality of buffers, and each data packet is stored in one or more buffers as required by the length thereof. A generic adapter manager is provided for performing and synchronizing generic adapter management functions, including implementing data structures in the packet memory by organizing data packets in buffers, and organizing data packets into queues for processing by the processor subsystem or transfer to or from generic adapter input/output ports. Each generic adapter input/output port has associated therewith a packet memory interface providing for the transfer of data packets into and out of the packet memory, such that when a data packet is received at an input/output port, the data packet is transferred into the adapter packet memory and queued for processing.
Abstract:
Silicidierte Nanodrähte als Nanobrücken in Josephson-Kontakten. Ein supraleitender silicidierter Nanodraht wird als Weak-Link-Brücke in einem Josephson-Kontakt verwendet und ein Herstellungsverfahren wird angewendet, um silicidierte Nanodrähte herzustellen, das ein Strukturieren von zwei Kontakt-Bänken und eines rauen Nanodrahts aus einem Siliciumsubstrat, ein Umformen des Nanodrahts durch Wasserstoff-Tempern und ein Silicidieren des Nanodrahts durch Einbringen eines Metalls in die Nanodraht-Struktur aufweist.
Abstract:
Verfahren zum Ausbilden eines supraleitenden Weak-Link-Kontakts, wobei das Verfahren aufweist: Strukturieren einer ersten Kontakt-Bank, einer zweiten Kontakt-Bank und eines rauen Nanodrahts aus einem Siliciumsubstrat; Umformen des Nanodrahts durch Wasserstoff-Tempern; und Silicidieren des Nanodrahts durch Einbringen eines Metalls in den Nanodraht; wobei: der Nanodraht so geformt, dimensioniert, strukturiert, angeordnet und/oder verbunden ist, dass er eine Weak-Link-Brücke zwischen der ersten Kontakt-Bank und der zweiten Kontakt-Bank bildet.
Abstract:
A method of forming a self-aligned device is provided and includes depositing carbon nanotubes (CNTs) onto a crystalline dielectric substrate, isolating a portion of the crystalline dielectric substrate encompassing a location of the CNTs, forming gate dielectric and gate electrode gate stacks on the CNTs while maintaining a structural integrity thereof and forming epitaxial source and drain regions in contact with portions of the CNTs on the crystalline dielectric substrate that are exposed from the gate dielectric and gate electrode gate stacks.
Abstract:
A method of forming a self-aligned device is provided and includes depositing carbon nanotubes (CNTs) onto a crystalline dielectric substrate, isolating a portion of the crystalline dielectric substrate encompassing a location of the CNTs, forming gate dielectric and gate electrode gate stacks on the CNTs while maintaining a structural integrity thereof and forming epitaxial source and drain regions in contact with portions of the CNTs on the crystalline dielectric substrate that are exposed from the gate dielectric and gate electrode gate stacks.
Abstract:
Ein Verfahren zum Bilden einer selbstausgerichteten Einheit wird bereitgestellt und beinhaltet das Abscheiden von Kohlenstoff-Nanoröhren (CNTs) auf einem kristallinen dielektrischen Substrat, das Isolieren eines Teils des einen Lageort der CNTs umschließenden kristallinen dielektrischen Substrats, das Bilden von Gate-Dielektrikums- und Gate-Elektroden-Gate-Stapeln auf den CNTs unter Beihaltung von deren struktureller Integrität und das Bilden epitaktischer Source- und Drain-Zonen in Kontakt mit Teilen der CNTs auf dem kristallinen dielektrischen Substrat, die von den Gate-Dielektrikums- und Gate-Elektroden-Gate-Stapeln freiliegen.