Abstract:
PROBLEM TO BE SOLVED: To provide a semiconductor device of high strength that lowers an effective dielectric constant k eff , maintains an inter-level vertical capacity in an interconnection at a low level and a manufacturing method of the same. SOLUTION: The method of manufacturing the device comprises a step for providing a structure having an insulating layer 120 of at least one interconnection 130 and a step for forming a sublithographic template mask 150 on the insulating layer. A sublithographic feature 135a is formed in the vicinity of at least one intereconnection by performing etching on the insulating layer through the sublithographic template mask using a selective etching step. COPYRIGHT: (C)2005,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To provide a method for fabricating a nanocolumnar airbridge structure in a Very-Large Scale Integrated (VLSI) and Ultra-Large Scale Integrated (ULSI) devices, and also to provide high performance packaging. SOLUTION: A method for producing a low k, ultra-low k, and super ultra-low-k multilayer interconnect structures on a substrate, in which the interconnect line structure bodies are separated laterally by a dielectric with vertically oriented nanoscale voids, formed by perforating the voids using sub-optical lithography patterning and etching techniques and closing off the tops of the perforations by a dielectric deposition step. The lines are supported by either solid or patterned dielectric features underneath. COPYRIGHT: (C)2005,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To provide a method of forming in-layer and interlayer air bridge structures, in a large scale integrated circuit (VLSI) device, a very large scale integrated circuit (ULSI) device, and a high-performance package. SOLUTION: The method of forming low k (dielectric constant) and ultra-low k multilayer mutual connections on a substrate is provided with a process to form a pair of mutual connection, separated along a side face by an air gap and a support layer in a via level of a dual damascene structure which exists only under a metal wiring, a process to remove a sacrificial dielectric through a holed bridge layer to connect an upper surface of the mutual connection along the side face, a process of executing a multilayer level extraction of the sacrificial layer, a process of sealing the bridge by a controlled method, and a process of reducing the effective dielectric constant of a film holed by using a patterning technology of a quasi-optical lithography. COPYRIGHT: (C)2004,JPO&NCIPI
Abstract:
An improved method of performing sidewall spacer image transfer is presented. The method includes forming a set of sidewall spacers (109a) next to a plurality of mandrels (106a), the set of sidewall spacers being directly on top of a hard-mask layer (105); transferring image of at least a portion of the set of sidewall spacers to the hard- mask layer to form a device pattern (105a); and transferring the device pattern from the hard- mask layer to a substrate (101) underneath the hard-mask layer.
Abstract:
A method (and resultant structure) of forming a plurality of masks, includes creating a reference template, using imprint lithography to print at least one reference template alignment mark on all of a plurality of mask blanks for a given chip set, and printing sub-patterns on each of the plurality of mask blanks, and aligning the sub-patterns to the at least one reference template alignment mark.
Abstract:
Verfahren, aufweisend:Bilden einer Gruppe von Seitenwand-Abstandhaltern (109a) neben mehreren Dornen (106a), wobei sich die Gruppe von Seitenwand-Abstandhaltern direkt auf einer Hartmaskenschicht (105) befindet;Übertragen eines Bildes zumindest eines Abschnitts der Gruppe von Seitenwand-Abstandhaltern auf die Hartmaskenschicht, um eine Einheitsstruktur (105a) zu bilden;Übertragen der Einheitsstruktur von der Hartmaskenschicht auf ein Substrat (101) unterhalb der Hartmaskenschicht; undBilden einer Photoresist-Sperrmaske (112a), wobei die Photoresist-Sperrmaske nur den zumindest einen Abschnitt der Gruppe von Seitenwand-Abstandhaltern frei lässt und den Rest der Gruppe von Seitenwand-Abstandhaltern bedeckt,wobei die Hartmaskenschicht eine zweite Hartmaskenschicht ist und wobei das Übertragen der Einheitsstruktur von der Hartmaskenschicht auf das Substrat ferner das Übertragen der Einheitsstruktur auf eine erste Hartmaskenschicht (103) umfasst, wobei sich die erste Hartmaskenschicht unterhalb der zweiten Hartmaskenschicht befindet und durch eine Planarisierungsschicht (104) von dieser getrennt ist.
Abstract:
An improved method of performing sidewall spacer image transfer is presented. The method includes forming a set of sidewall spacers (109a) next to a plurality of mandrels (106a), the set of sidewall spacers being directly on top of a hard-mask layer (105); transferring image of at least a portion of the set of sidewall spacers to the hard- mask layer to form a device pattern (105a); and transferring the device pattern from the hard- mask layer to a substrate (101) underneath the hard-mask layer.
Abstract:
Es wird ein verbessertes Verfahren zur Durchführung einer Seitenwand-Abstandhalter-Bildübertragung bereitgestellt. Das Verfahren umfasst das Bilden einer Gruppe von Seitenwand-Abstandhaltern (109a) neben mehreren Dornen (106a), wobei sich die Gruppe von Seitenwand-Abstandhaltern direkt auf einer Hartmaskenschicht (105) befindet; das Übertragen eines Bildes zumindest eines Abschnitts der Gruppe von Seitenwand-Abstandhaltern auf die Hartmaskenschicht, um eine Einheitsstruktur (105a) zu bilden; und das Übertragen der Einheitsstruktur von der Hartmaskenschicht auf ein Substrat (101) unterhalb der Hartmaskenschicht.
Abstract:
An improved method of performing sidewall spacer image transfer is presented. The method includes forming a set of sidewall spacers (109a) next to a plurality of mandrels (106a), the set of sidewall spacers being directly on top of a hard-mask layer (105); transferring image of at least a portion of the set of sidewall spacers to the hard- mask layer to form a device pattern (105a); and transferring the device pattern from the hard- mask layer to a substrate (101) underneath the hard-mask layer.