Abstract:
The present invention relates to a semiconductor device (1) for use in at least an optical application comprising: at least an optically passive aspect (2) that is operable in substantially an optically passive mode, and at least an optically active material (3) comprising at least a material that is operable in substantially an optically active mode, wherein: the optically passive aspect (2) further comprises at least a crystalline seed layer (4), the optically active material (3) being epitaxially grown in at least a predefined structure (5) provided in the optically passive aspect (2) that extends to at least an upper surface (4') of the crystalline seed layer (4), and the optically passive aspect (2) is structured to comprise at least a passive photonic structure (6), wherein the crystalline seed layer (4) comprises a crystalline wafer and wherein the optically active material (3) comprises at least one of: a III-V material and a II-VI material.
Abstract:
A semiconductor structure (1) comprises a processed semiconductor substrate (2) including active electronic components (3); a dielectric layer (4) covering at least partially the processed semiconductor substrate (2, 3); an interface layer (5) which is suitable for growing optically active material on the interface layer, wherein the interface layer (5) is bonded to the dielectric layer (4); wherein the optical gain layer (5) and the processed semiconductor substrate (2, 3) are connected through the dielectric layer (4) by electric and/or optical contacts (6). A method for fabricating a semiconductor structure (1) comprises: providing (S1) a processed semiconductor substrate (2) including active electronic components (3); depositing (S2) a dielectric layer (4) covering at least partially the processed semiconductor substrate (2, 3); bonding (S4) an interface layer (5) to the dielectric layer (4), wherein the interface layer (5) is suitable for growing optically active material on the interface layer; and connecting (S7) the interface layer (5) and the processed semiconductor substrate (2, 3) with each other through the dielectric layer (4) by electric and/or optical contacts (6).
Abstract:
Halbleiter-Einheit (1) zur Verwendung in wenigstens einer optischen Anwendung, die aufweist: wenigstens einen optisch passiven Aspekt (2), der in einem optisch passiven Modus betreibbar ist, und wenigstens ein optisch aktives Material (3), das wenigstens ein Material aufweist, das in einem optisch aktiven Modus betreibbar ist, wobei: der optisch passive Aspekt (2) des Weiteren wenigstens eine kristalline Kristallkeimschicht (4) aufweist, wobei das optisch aktive Material (3) epitaktisch in wenigstens einer vordefinierten Struktur (5) aufgewachsen wird, die in dem optisch passiven Aspekt (2) bereitgestellt ist, die sich bis zu wenigstens einer Oberseite (4') der kristallinen Kristallkeimschicht (4) erstreckt, und der optisch passive Aspekt (2) so strukturiert ist, dass er wenigstens eine passive photonische Struktur (6) aufweist, wobei die kristalline Kristallkeimschicht (4) einen kristallinen Wafer aufweist und wobei das optisch aktive Material (3) wenigstens eines aufweist von: einem III-V-Material und einem II-VI-Material, wobei die photonische Struktur (6) wenigstens einen optischen Wellenleiter (6") aufweist, wobei die vordefinierte Struktur (5) eine dielektrische Apertur (6', 6") aufweist, die durch eine umhüllende Schicht (6', 6") der optischen Wellenleiter (6") mit Bezug auf den optisch passiven Aspekt (2) ausgebildet ist, wobei der optisch passive Aspekt (2) nach dem Aufwachsen des optisch aktiven Materials in der vordefinierten Struktur (5) strukturiert wird.
Abstract:
Die vorliegende Erfindung bezieht sich auf eine Halbleiter-Einheit (1) zur Verwendung in wenigstens einer optischen Anwendung, die aufweist: wenigstens einen optisch passiven Aspekt (2), der in im Wesentlichen einem optisch passiven Modus betreibbar ist, und wenigstens ein optisch aktives Material (3), das wenigstens ein Material aufweist, das in im Wesentlichen einem optisch aktiven Modus betreibbar ist, wobei: der optisch passive Aspekt (2) des Weiteren wenigstens eine kristalline Kristallkeimschicht (4) aufweist, das optisch aktive Material (3) epitaxial in wenigstens einer vordefinierten Struktur (5) aufgewachsen ist, die in dem optisch passiven Aspekt (2) bereitgestellt ist, die sich bis wenigstens zu einer Oberseite (4') der kristallinen Kristallkeimschicht (4) erstreckt, und der optisch passive Aspekt (2) so strukturiert ist, dass er wenigstens eine passive photonische Struktur (6) aufweist, wobei die kristalline Kristallkeimschicht (4) einen kristallinen Wafer aufweist und wobei das optisch aktive Material (3) wenigstens eines aufweist von: einem III-V-Material und einem II-VI-Material.
Abstract:
Eine kondensatorfreie DRAM-Zelle (200) weist eine Heterostruktur, eine Gate-Struktur (106, 107), welche in einer ersten Richtung an die Heterostruktur grenzt, eine Drain-Struktur (108), welche in einer zweiten Richtung senkrecht zu der ersten Richtung an die Heterostruktur grenzt, und eine Source-Struktur (104) auf, welche in der der zweiten Richtung entgegengesetzten Richtung an die Heterostruktur grenzt, wobei die Heterostruktur eine oder mehrere halbleitende Kanalschichten (610, 612) und eine oder mehrere elektrisch isolierende Barriereschichten (620, 622, 624) aufweist, wobei die Kanalschichten (610, 612) und die Barriereschichten (620, 622, 624) in der ersten Richtung abwechselnd gestapelt sind.
Abstract:
A method of fabricating a semiconductor structure is disclosed. The method includes the steps of : providing a processed, preferably silicon based, substrate 2 which includes active electronic components, e.g. a CMOS wafer; depositing a dielectric layer 4 covering at least part of the processed substrate; bonding an interface layer 5 to the dielectric layer; and interconnecting the interface layer and substrate with each other through the dielectric layer. The interface layer is a seed layer having a lattice constant suitable for growth of III-V material, so that optically active components/material can be grown/deposited onto the structure. In some embodiments the active components are silicon photonics components, optical waveguides, grating coupler, modulators, multiplexers, de-multiplexers, ring resonators or directional components.
Abstract:
The present invention relates to a semiconductor device (1) for use in at least an optical application comprising: at least an optically passive aspect (2) that is operable in substantially an optically passive mode, and at least an optically active material (3) comprising at least a material that is operable in substantially an optically active mode, wherein: the optically passive aspect (2) further comprises at least a crystalline seed layer (4), the optically active material (3) being epitaxially grown in at least a predefined structure (5) provided in the optically passive aspect (2) that extends to at least an upper surface (4') of the crystalline seed layer (4), and the optically passive aspect (2) is structured to comprise at least a passive photonic structure (6), wherein the crystalline seed layer (4) comprises a crystalline wafer and wherein the optically active material (3) comprises at least one of: a III-V material and a II-VI material.
Abstract:
A semiconductor structure 1 comprises a substrate 2 comprising a first crystalline semiconductor material, a dielectric layer 3 is positioned above the substrate 2 and defines an opening 4, a second crystalline semiconductor material 9 can then at least partially fill the opening 4. A crystalline interlayer 8 is formed between the substrate 2 and the second crystalline semiconductor material 9. The first crystalline semiconductor material and the second crystalline semiconductor material 9 are lattice mismatched, and the crystalline interlayer 8 comprises an oxygen compound. The dielectric layer can partially cover the substrate and the dielectric trenches can be non crystalline. The second semiconductor material can be a crystalline semiconductor including the III-V, II-VI and the IV-IV family of semiconductor materials. The interlayer structure may comprise a diffusion barrier layer or comprise a multilayer structure. It can have metallic conductivity or comprise an insulating material. The second crystalline material can be grown on the interlayer by forming islands of the semiconductor material on the crystalline interlayer.
Abstract:
A semiconductor device 1 comprising an optically passive aspect 2, and an optically active material 6, wherein the optically passive aspect 2 is patterned to comprise a photonic crystal structure 4 with a predefined structure 5, and the optically active material 6 is grown in the predefined structure 5 with a layer 7 acting as a seed layer. Any material which exceeds predefined area 5 may be removed by etching or polishing. The optically active material 6 may be crystalline or amorphous and performs light generation, amplification, detection or modulation. The optically passive region 2 may form a wire waveguide 3. A VCSEL may be formed by the optically active material 6. The cross section of the optically passive region 2 may be smaller than or the same size as that of the predefined structure 5, there may be a tapered region between the optically passive region and the structure 5. The photonic crystal may be a 2D crystal.
Abstract:
A semiconductor device 1 comprising an optically passive aspect 2 and an optically active material 3 wherein the optically passive aspect 2 further comprises at least a crystalline seed layer (4), the optically active material 3 being epitaxially grown in a predefined structure 5 provided in the optically passive aspect 2 that extends to at least an upper surface 4 of the seed layer 4, and the optically passive aspect 2 is structured to comprise a passive photonic structure 6 subsequent to the growth of the optically active material 3. The active material 3 may be implemented as a light emitting structure e.g. a laser, an LED or a optical amplifier amongst others. The predefined structure 5 may be a hole or a trench. The photonic structure 6 may be a waveguide. The device may include a VCSEL. Holes (11 in figure 4) may be formed in the photonic structure 6 and the active region 3. The size of the holes may be tapered to increase towards the photonic structure 6 or may be the same size. The device may comprise a 2D photonic crystal.