Abstract:
A plasma etching system having a wafer chuck with a magnet that applies a magnetic field over a wafer to shield the wafer from charged particles. The magnetic field is parallel with the wafer, and is strongest near the wafer surface. The magnetic field may be straight, or circular. In operation, electrons are deflected from the wafer by the Lorentz force, the wafer acquires a positive charge, and ions are deflected by electrostatic repulsion. Neutral species are allowed through the magnetic field, and they collide with the wafer. Neutral species generally provide more isotropic and material-selective etching than charged particles, so the present magnetic field tends to increase etch isotropy and material selectivity. Also, the magnetic field can protect the wafer from seasoning processes designed to clean unwanted films from the chamber surface as seasoning processes typically rely on etching by charged particles
Abstract:
PROBLEM TO BE SOLVED: To provide a plasma etching system having a wafer chuck including a magnet that applies a magnetic field over a wafer to shield the wafer from charged particles. SOLUTION: The magnetic field is parallel to the wafer, and the intensity thereof is highest near the wafer surface. The magnetic field may be straight, or circular. In operation, electrons are deflected from the wafer by the Lorentz force, the wafer is positively charged, and ions are deflected by electrostatic repulsion. Neutral chemical species are allowed to pass through the magnetic field, and collide with the wafer. Neutral chemical species generally provide higher isotropic and material-selective etching than charged particles, so that this magnetic field tends to increase etching isotropy and material selectivity. The magnetic field can protect the wafer from seasoning processes designed to remove unwanted films from the chamber surface because seasoning processes generally rely on etching by charged particles. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To increase data speed or band width by arranging a pre-fetch circuit so that data speed among each hierarchy stage is all equalized substantially and controlling a latch so that the respective data speed at each hierarchy stage is all maintained. SOLUTION: Stages A-C have different data speed/signal time (data speed/bit) a, b, c respectively. Data speed at each stage is determined by data speed/signal path (selected by the number of signal path that is the number of pre-fetch). Pre-fetch is constituted between stages A-B of m>=int(a/b), pre-fetch is constituted between stages B-C of n>=int(b/c), and integers m, n are adjusted as desired. In order to vary pre-fetch depth at each stage, a pointer is designed so as to correspond to pre-fetch depth. A pointer signal is supplied by using a control circuit 214, the control circuit 214 latches continuously data made to synchronize with the latch included in a pre-fetch circuit, and timing is performed optimally.
Abstract:
PROBLEM TO BE SOLVED: To provide a method for activating hierarchically word lines. SOLUTION: A memory structure comprises a plurality of banks (each bank comprises a plurality of blocks), a plurality of timing critical address lines (the number of critical address lines is equal to the number of banks) connected to all of the blocks in respective ones of the blocks, and a plurality of dedicated address lines connected to respective ones of the blocks. COPYRIGHT: (C)2003,JPO
Abstract:
PROBLEM TO BE SOLVED: To activate a word line in a hierarchical form by equalizing the number of timing-critical address lines to the number of banks, and connecting plural exclusive address lines to respective one of each block. SOLUTION: After a first bank is decoded using a timing signal of a signal line 300, a timing signal of the signal line 300 is transferred, a single memory block 330 is decoded in the bank, lastly, a single word line WL is activated, and the third decoding is performed by a shared row decoder/word line driver 61. At the beginning, a pre-decoded address signal of the signal line 300 including timing information is used at a first level of hierarchical decoding, after a single bank of a unit is activated, an address signal in the signal line 300 is multiplexed with other addresses pre-recorded statically in a signal line 310 having possibility for continuous variation independently of a bank address.
Abstract:
A plasma etching system having a wafer chuck with a magnet that applies a magnetic field over a wafer to shield the wafer from charged particles. The magnetic field is parallel with the wafer, and is strongest near the wafer surface. The magnetic field may be straight, or circular. In operation, electrons are deflected from the wafer by the Lorentz force, the wafer acquires a positive charge, and ions are deflected by electrostatic repulsion. Neutral species are allowed through the magnetic field, and they collide with the wafer. Neutral species generally provide more isotropic and material-selective etching than charged particles, so the present magnetic field tends to increase etch isotropy and material selectivity. Also, the magnetic field can protect the wafer from seasoning processes designed to clean unwanted films from the chamber surface as seasoning processes typically rely on etching by charged particles.
Abstract:
A semiconductor memory in accordance with the present invention includes a data path including a plurality of hierarchical stages, each stage including a bit data rate which is different from the other stages. At least two prefetch circuits are disposed between the stages. The at least two prefetch circuits include at least two latches for receiving data bits and storing the data bits until a next stage in the hierarchy is capable of receiving the data bits. The at least two prefetch circuits are coupled between stages such that an overall data rate per stage between stages are substantially equal. Control signals control the at least two latches such that prefetch circuits maintain the overall data rate between the stages.
Abstract:
A semiconductor memory in accordance with the present invention includes a data path including a plurality of hierarchical stages, each stage including a bit data rate which is different from the other stages. At least two prefetch circuits are disposed between the stages. The at least two prefetch circuits include at least two latches for receiving data bits and storing the data bits until a next stage in the hierarchy is capable of receiving the data bits. The at least two prefetch circuits are coupled between stages such that an overall data rate per stage between stages are substantially equal. Control signals control the at least two latches such that prefetch circuits maintain the overall data rate between the stages.