PARALLELBERECHNUNGSARCHITEKTUR MIT REKONFIGURIERBARER KERNEBENEN- UND VEKTOREBENEN-PARALLELITÄT

    公开(公告)号:DE112019002981T5

    公开(公告)日:2021-03-11

    申请号:DE112019002981

    申请日:2019-06-05

    Applicant: IBM

    Abstract: Bereitgestellt wird Verarbeitungs-Hardware eines neuronalen Netzwerks unter Verwendung von Parallelberechnungsarchitekturen mit rekonfigurierbarer Kernebenen- und Vektorebenen-Parallelität. In verschiedenen Ausführungsformen wird ein Arbeitsspeicher eines neuronalen Netzwerkmodells angepasst, um ein neuronales Netzwerkmodell zu speichern, das eine Mehrzahl von Schichten aufweist. Jede Schicht hat mindestens eine Dimension und weist eine Mehrzahl von synaptischen Gewichtungen auf. Bereitgestellt wird eine Mehrzahl von neuronalen Kernen. Jeder neuronale Kern enthält eine Berechnungseinheit und einen Aktivierungsarbeitsspeicher. Die Berechnungseinheit ist angepasst, um eine Mehrzahl von synaptischen Gewichtungen auf eine Mehrzahl von Eingabeaktivierungen anzuwenden, um eine Mehrzahl von Ausgabeaktivierungen zu erzeugen. Die Berechnungseinheit hat eine Mehrzahl von Vektoreinheiten. Der Aktivierungsarbeitsspeicher ist angepasst, um die Eingabeaktivierungen und die Ausgabeaktivierungen zu speichern. Das System ist angepasst, um die Mehrzahl von Kernen in eine Mehrzahl von Partitionen auf Grundlage von Dimensionen der Schicht und der Vektoreinheiten zu partitionieren.

    Datendarstellung für dynamische Genauigkeit in Kernen neuronaler Netze

    公开(公告)号:DE112019003529T5

    公开(公告)日:2021-04-15

    申请号:DE112019003529

    申请日:2019-09-25

    Applicant: IBM

    Abstract: Systeme für Neural Network Computation werden bereitgestellt. Ein Prozessor eines neuronalen Netzes weist eine Mehrzahl von neuronalen Kernen auf. Der Prozessor des neuronalen Netzes weist eine oder mehrere Prozessorgenauigkeiten pro Aktivierung auf. Der Prozessor ist dazu ausgebildet, Daten mit einer Prozessormerkmalsdimension anzunehmen. Eine Umwandlungsschaltung ist mit dem Prozessor des neuronalen Netzes verbunden und ist dazu gestaltet: einen Eingabedatentensor mit einer Eingabegenauigkeit pro Kanal bei einem oder mehreren Merkmalen zu empfangen; den Eingabedatentensor von der Eingabegenauigkeit in die Prozessorgenauigkeit umzuwandeln; die Eingabedaten in eine Mehrzahl von Blöcken zu unterteilen, wobei jeder Block einer der Prozessormerkmalsdimensionen entspricht; jeden der Mehrzahl von Blöcken für einen der Mehrzahl von neuronalen Kernen bereitzustellen. Der Prozessor des neuronalen Netzes ist dazu gestaltet, durch die Mehrzahl von neuronalen Kernen eine Ausgabe einer oder mehrerer Schichten des neuronalen Netzes zu berechnen.

    ZENTRALER SCHEDULER UND ANWEISUNGSZUTEILER FÜR EINEN NEURONALEN INFERENZPROZESSOR

    公开(公告)号:DE112019000676T5

    公开(公告)日:2020-12-03

    申请号:DE112019000676

    申请日:2019-03-28

    Applicant: IBM

    Abstract: Neuronale Inferenzprozessoren werden bereitgestellt. In verschiedenen Ausführungsformen umfasst ein Prozessor eine Mehrzahl von Kernen. Jeder Kern enthält eine neuronale Recheneinheit, einen Aktivierungsspeicher und eine lokale Steuereinheit. Die neuronale Recheneinheit ist so ausgelegt, dass sie eine Mehrzahl von synaptischen Gewichtungen auf eine Mehrzahl von Eingabeaktivierungen anwendet, um eine Mehrzahl von Ausgabeaktivierungen zu erzeugen. Der Aktivierungsspeicher ist so ausgelegt, dass er die Eingabeaktivierungen und Ausgabeaktivierungen speichert. Die lokale Steuereinheit ist so ausgelegt, dass sie die Eingabeaktivierungen von dem Aktivierungsspeicher in die neuronale Recheneinheit lädt und die Mehrzahl von Ausgabeaktivierungen von der neuronalen Recheneinheit in dem Aktivierungsspeicher speichert. Der Prozessor enthält einen Speicher für ein neuronales Netzwerkmodell, der so ausgelegt ist, dass er die Netzwerkparameter, darunter die Mehrzahl von synaptischen Gewichtungen, speichert. Der Prozessor enthält einen globalen Scheduler, der funktionsmäßig mit der Mehrzahl von Kernen verbunden und so ausgelegt ist, dass er jedem Kern die synaptischen Gewichtungen aus dem Speicher für ein neuronales Netzwerkmodell bereitstellt.

Patent Agency Ranking