Abstract:
A method of forming a p-type semiconductor device is provided, which in one embodiment employs an aluminum containing threshold voltage shift layer to produce a threshold voltage shift towards the valence band of the p-type semiconductor device. The method of forming the p-type semiconductor device may include forming a gate structure on a substrate, in which the gate structure includes a gate dielectric layer in contact with the substrate, an aluminum containing threshold voltage shift layer present on the gate dielectric layer, and a metal containing layer in contact with at least one of the aluminum containing threshold voltage shift layer and the gate dielectric layer. P-type source and drain regions may be formed in the substrate adjacent to the portion of the substrate on which the gate structure is present. A p-type semiconductor device provided by the above-described method is also provided.
Abstract:
An electrical device is provided with a p-type semiconductor device (105) having a first gate structure (60) that includes a gate dielectric (10) on top of a semiconductor substrate (5), a p-type work function metal layer (25), a metal layer (28) composed of titanium and aluminum, and a metal fill (29 ) composed of aluminum. An n-type semiconductor device (100) is also present, on the semiconductor substrate that includes a second gate structure that includes a gate dielectric, a metal layer composed of titanium and aluminum, and a metal fill composed of aluminum. An interlevel dielectric (30) is present over the semiconductor substrate. The interlevel dielectric includes interconnects (80) to the source and drain regions of the p-type and n-type semiconductor devices. The interconnects are composed of a metal layer composed of titanium and aluminium, and a metal fill composed of aluminum. The present disclosure also provides a method of forming the aforementioned structure.
Abstract:
Ein Verfahren zum Herstellen eines Gate-Stapels einer Halbleitereinheit weist Folgendes auf: Bilden einer ersten dielektrischen Schicht über einem Kanalbereich der Einheit, Bilden einer ersten Nitrid-Schicht über der ersten dielektrischen Schicht, Abscheiden einer Einfangschicht auf der ersten Nitrid-Schicht, Bilden einer Abdeckschicht über der Einfangschicht, Entfernen von Bereichen der Abdeckschicht und der Einfangschicht, um einen Bereich der ersten Nitrid-Schicht in einem Feldeffekttransistor-Bereich vom n-Typ (einem n-FET-Bereich) des Gate-Stapels freizulegen, Bilden einer ersten Gate-Metall-Schicht über der ersten Nitrid-Schicht und der Abdeckschicht, Abscheiden einer zweiten Nitrid-Schicht auf der ersten Gate-Metall-Schicht sowie Abscheiden eines Gate-Elektroden-Materials auf der zweiten Nitrid-Schicht.
Abstract:
Eine Struktur weist ein Halbleitersubstrat (8) und einen nFET und einen pFET auf, die auf dem Substrat (8) angeordnet sind. Der pFET weist ein SiGe-Kanalgebiet auf, das auf oder in einer Fläche des Halbleitersubstrats (8) gebildet ist, und ein Gate-Dielektrikum mit einer Oxidschicht (20), die über dem Kanalgebiet liegt, und eine dielektrische High-k-Schicht (30), die über der Oxidschicht (20) liegt. Eine Gate-Elektrode liegt über dem Gate-Dielektrikum und weist eine untere Metallschicht (40), die an die High-k-Schicht angrenzt, eine adsorbierende Metallschicht (50), die an die untere Metallschicht (40) angrenzt, und eine obere Metallschicht (60) auf, die an die adsorbierende Metallschicht (50) angrenzt. Die Metallschicht adsorbiert Sauerstoff aus der Substrat (8)-(nFET) und SiGe-Grenzfläche (pFET) zur Oxidschicht (20), was zu einer effektiven Verringerung in Tinv und Vt des pFET führt, während Tinv skaliert wird und Vt für den nFET aufrechterhalten wird, was zur Folge hat, dass die Vt des pFET näher an der Vt eines ähnlich aufgebauten nFET mit skalierten Tinv-Werten liegt.
Abstract:
Verfahren zum Bilden eines Halbleiterbauelements, aufweisend: Bilden eines ersten Opferstapels (15) und eines zweiten Opferstapels (20) auf einem Halbleitersubstrat (5), wobei der erste Opferstapel und der zweite Opferstapel jeweils eine Gate-Dielektrikumschicht (10) aufweisen, wobei sich der erste Opferstapel in einem ersten Bauelementbereich (6) des Halbleitersubstrats zwischen einem Source-Bereich des n-Typs und einem Drain-Bereich des n-Typs befindet, und sich der zweite Opferstapel in einem zweiten Bauelementbereich (7) des Halbleitersubstrats zwischen einem Source-Bereich des p-Typs und einem Drain-Bereich des p-Typs befindet; Bilden eines Zwischenebenendielektrikums (30), das eine obere Oberfläche aufweist, die mit einer oberen Oberfläche des ersten Opferstapels und des zweiten Opferstapels koplanar ist; Entfernen eines Teils des ersten Opferstapels und des zweiten Opferstapels, um die Gate-Dielektrikumschicht (10) freizulegen; Bilden einer Austrittsarbeitsmetallschicht (25) des p-Typs auf der Gate-Dielektrikumschicht; Bilden eines Durchkontakts (23) zu jeweils dem Source-Bereich (21) des n-Typs, dem Drain-Bereich (22) des n-Typs, dem Source-Bereich des p-Typs und dem Drain-Bereich des p-Typs; Entfernen der Austrittsarbeitsmetallschicht des p-Typs von dem ersten Bauelementbereich, wobei die Austrittsarbeitsmetallschicht des p-Typs in dem zweiten Bauelementbereich bleibt; ...
Abstract:
Ein Verfahren zum Herstellen eines Gate-Stapels einer Halbleitereinheit weist Folgendes auf: Bilden einer ersten dielektrischen Schicht über einem Kanalbereich der Einheit, Bilden einer Barrierenschicht über der ersten dielektrischen Schicht, Bilden einer ersten Gate-Metall-Schicht über der Barrierenschicht, Bilden einer Abdeckschicht über der ersten Gate-Metall-Schicht, Entfernen von Bereichen der Barrierenschicht, der ersten Gate-Metall-Schicht und der Abdeckschicht, um einen Bereich der ersten dielektrischen Schicht in einem Feldeffekttransistor-Bereich vom p-Typ (einem p-FET-Bereich) des Gate-Stapels freizulegen, Abscheiden einer ersten Nitridschicht auf freigelegten Bereichen der Abdeckschicht und der ersten dielektrischen Schicht, Abscheiden einer Einfangschicht auf der ersten Nitrid-Schicht, Abscheiden einer zweiten Nitrid-Schicht auf der Einfangschicht sowie Abscheiden eines Gate-Elektroden-Materials auf der zweiten Nitrid-Schicht.
Abstract:
Ein Verfahren zum Herstellen eines Gate-Stapels einer Halbleitereinheit weist Folgendes auf: Bilden einer ersten dielektrischen Schicht über einem Kanalbereich der Einheit, Bilden einer ersten Nitrid-Schicht über der ersten dielektrischen Schicht, Bilden einer ersten Gate-Metall-Schicht über der ersten Nitrid-Schicht, Bilden einer Abdeckschicht über der ersten Gate-Metall-Schicht, Entfernen von Bereichen der Abdeckschicht und der ersten Gate-Metall-Schicht, um einen Bereich der ersten Nitrid-Schicht in einem Feldeffekttransistor-Bereich vom p-Typ (einem p-FET-Bereich) des Gate-Stapels freizulegen, Abscheiden einer Einfangschicht auf der ersten Nitrid-Schicht und der Abdeckschicht, Abscheiden einer zweiten Nitrid-Schicht auf der Einfangschicht sowie Abscheiden eines Gate-Elektroden-Materials auf der zweiten Nitrid-Schicht.
Abstract:
Das Einstellen eines Schaltschwellenwertes eines Feldeffekttransistors, der ein Hi-K-Gate-Elektroden-Dielektrikum und eine Metall-Gate-Elektrode enthält, wird erreicht und die Schaltschwellenwerte werden zwischen NFETs und PFETs abgestimmt, indem Materialien mit fixierten Ladungen in einer dem Leitungskanal des Transistors benachbarten Zwischenschicht bereitgestellt werden, die zum Anhaften des Hi-K-Materials, je nach Bauart vorzugsweise Hafniumoxid oder HfSiOn, auf einem Halbleitermaterial dient, nicht aber zum Diffundieren des Materials mit fixierten Ladungen in das Hi-K-Material nach dessen Aufbringen. Durch die größere Nähe des Materials mit fixierten Ladungen zu dem Leitungskanal des Transistors wird die Wirksamkeit des Materials mit fixierten Ladungen zum Einstellen des Schwellenwertes aufgrund der Austrittsarbeit der Metall-Gate-Elektrode erhöht, insbesondere wenn sowohl für NFETs als auch PFETs in einem integrierten Schaltkreis ein und dasselbe Metall oder dieselbe Legierung verwendet wird, was der ordnungsgemäßen Abstimmung der Schwellenwerte entgegen stünde.
Abstract:
Verfahren zum Herstellen eines Gate-Stapels einer Halbleiter-Einheit, wobei das Verfahren aufweist:Bilden einer ersten dielektrischen Schicht (302) über einem Kanalbereich der Einheit;Bilden einer ersten Nitrid-Schicht (802) über der ersten dielektrischen Schicht (302);Abscheiden einer Einfangschicht (902) auf der ersten Nitrid-Schicht (802), wobei die Einfangschicht (902) ein Sauerstoff-Einfangmaterial beinhaltet;Bilden einer Abdeckschicht (602) über der Einfangschicht (902);Entfernen von Bereichen der Abdeckschicht (602) und der Einfangschicht (902), um einen Bereich der ersten Nitrid-Schicht (802) in einem Feldeffekttransistor-Bereich vom n-Typ (108) des Gate-Stapels freizulegen;Bilden einer ersten Gate-Metall-Schicht (502) über der ersten Nitrid-Schicht (802) und der Abdeckschicht (602), wobei die erste Gate-Metall-Schicht (502) ein Sauerstoff-Einfangmaterial beinhaltet;Abscheiden einer zweiten Nitrid-Schicht auf der ersten Gate-Metall-Schicht;Abscheiden eines Gate-Elektroden-Materials auf der zweiten Nitrid-Schicht; undAusbilden eines Gate-Stapels in dem Feldeffekttransistor-Bereich vom n-Typ (108) und eines anderen Gate-Stapels in einem Feldeffekttransistor-Bereich vom p-Typ (110) wobei der Gate-Stapel aus der ersten dielektrischen Schicht (302), der ersten Nitrid-Schicht (802), der ersten Gate-Metall-Schicht (502), der zweiten Nitrid-Schicht und des Gate-Elektroden-Materials ausgebildet wird und der andere Gate-Stapel aus der ersten dielektrischen Schicht (302), der ersten Nitrid-Schicht (802), der Einfangschicht (902), der Abdeckschicht (602), der ersten Gate-Metall-Schicht (502), der zweiten Nitrid-Schicht und des Gate-Elektroden-Materials ausgebildet wird, wobei der Gate-Stapel eine höhere Sauerstoffeinfangfähigkeit als der andere Gate-Stapel aufweist.