Abstract:
A method for electroplating a gate metal (9) or other conducting or semiconducting material on a gate dielectric (2) is provided. The method involves selecting a substrate (3, 4), dielectric layer, and electrolyte solution or melt, wherein the combination of the substrate, dielectric layer, and electrolyte solution or melt allow an electrochemical current to be generated at an interface between the dielectric layer and the electrolyte solution or melt.
Abstract:
A semiconductor structure is provided that includes a V t stabilization layer between a gate dielectric and a gate electrode. The V t stabilization layer is capable of stabilizing the structure's threshold voltage and flatband voltage to a targeted value and comprises a nitrided metal oxide, or a nitrogen-free metal oxide, with the provision that when the V t stabilization layer comprises a nitrogen-free metal oxide, at least one of the semiconductor substrate or the gate dielectric includes nitrogen. The present invention also provides a method of fabricating such a structure.
Abstract:
A compound metal comprising HfSiN which is a n-type metal having a workfunction of about 4.0 to about 4.5, preferably about 4.3, eV which is thermally stable on a gate stack comprising a high k dielectric and an interfacial layer. Furthermore, after annealing the stack of HfSiN/high k dielectric/interfacial layer at a high temperature (on the order of about 1000°C), there is a reduction of the interfacial layer, thus the gate stack produces a very small equivalent oxide thickness (12 Å classical), which cannot be achieved using TaSiN.
Abstract:
PROBLEM TO BE SOLVED: To provide a complementary metal-oxide semiconductor (CMOS) structure including an intermediate layer between a Si-containing gate electrode and a high-k gate dielectric, so that a threshold voltage and a flat-band voltage of the structure are stabilized. SOLUTION: An insulating intermediate layer for use in the complementary metal-oxide semiconductor (CMOS) is provided in order to prevent undesirable shifts of the threshold voltage and the flat-band voltage. The insulating intermediate layer is disposed between a gate dielectric having a dielectric constant of more than 4.0 and a Si-containing gate conductor. The insulating intermediate layer comprises metal nitride capable of containing oxygen, and stabilizes the threshold voltage and the flat-band voltage. For a preferred embodiment, the insulating intermediate layer comprises aluminum nitride or aluminum oxinitride, and the gate dielectric comprises a hafnium oxide, hafnium silicate, or hafnium oxinitride. The structure is especially useful for stabilizing the threshold voltage and the flat-band voltage of a p-type field effect transistor. COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
A method of forming a CMOS structure, and the device produced therefrom, having improved threshold voltage and flatband voltage stability. The inventive method includes the steps of providing a semiconductor substrate having an nFET region and a pFET region; forming a dielectric stack atop the semiconductor substrate comprisisng an insulating interlayer atop a high k dielectric; removing the insulating interlayer from the nFET region without removing the insulating interlayer from the pFET region; and providing at least one gate stack in the pFET region and at least one gate stack in the nFET region. The insulating interlayer can be A1N or A1OxNY. The high k dielectric can be HfO2, hafnium silicate or hafnium silicon oxynitride. The insulating interlayer can be removed from the nFET region by a wet etch including a HC1/H2O2 peroxide solution.
Abstract:
A compound metal comprising HfSiN which is a n-type metal having a workfunction of about 4.0 to about 4.5, preferably about 4.3, eV which is thermally stable on a gate stack comprising a high k dielectric and an interfacial layer. Furthermore, after annealing the stack of HfSiN/high k dielectric/interfacial layer at a high temperature (on the order of about 1000°C), there is a reduction of the interfacial layer, thus the gate stack produces a very small equivalent oxide thickness (12 Å classical), which cannot be achieved using TaSiN.
Abstract:
PROBLEM TO BE SOLVED: To provide a high-k gate dielectric which maintains a constant threshold voltage even after a high temperature process in a CMOS integration step.SOLUTION: A stack of a high-k gate dielectric 30 and a metal gate structure including a lower metal layer 40, a capture metal layer 50, and an upper metal layer 60 is provided. The capture metal layer satisfies the following two standards: (1) to be a metal (M) which indicates a positive change in Gibbs free energy caused by a reaction of Si+2/yMO→2x/yM+SiO; and (2) to be a metal the Gibbs free energy of which is a larger negative value than a metal of the lower metal layer and a metal of the upper metal layer per oxygen atom to form an oxide. The capture metal layer satisfying these standards captures oxide atoms when the oxide atoms pass through a gate electrode, to be diffused toward the high-k gate dielectric. Furthermore, the capture metal layer reduces a thickness of a silicon oxide interface layer under the high-k gate dielectric remotely. As a result, a change in equivalent oxide thickness (EOT) of the whole gate dielectric is controlled.
Abstract:
PROBLEM TO BE SOLVED: To provide a method and a structure, capable of obtaining a germanium system semiconductor device, such as FET and MOS capacitor. SOLUTION: More specifically, the method for forming the semiconductor device, containing a stack consisting of a dielectric layer and a conductive material on the surface being an upper section or an internal section of a germanium contained material in which a non-oxygen chalcogen is rich (layer or wafer) or both of them is provided. The density of an interface trap is decreased, because undesirable formations of interface compounds at the time of growing the dielectric and thereafter is suppressed, by providing interfaces in which the non-oxygen chalcogen is rich. COPYRIGHT: (C)2007,JPO&INPIT