Abstract:
PROBLEM TO BE SOLVED: To provide an advanced back-end-of-line (BEOL) interconnect structure provided with a hybrid dielectric body. SOLUTION: Inter layer dielectric body (ILD) for a via level is preferably different from an ILD for a line level. In a preferable embodiment, the ILD the via level is formed with a low-k SiCOH material, and the ILD for the line level is formed with a low-k polymer thermosetting material. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
An advanced back-end-of-line (BEOL) interconnect structure having a hybrid dielectric is disclosed. The inter-layer dielectric (ILD) for the via level is preferably different from the ILD for the line level. In a preferred embodiment, the via-level ILD is formed of a low-k SiCOH material, and the line-level ILD is formed of a low-k polymeric thermoset material.
Abstract:
A porous low k or ultra low k dielectric film comprising atoms of Si, C, O and H (hereinafter "SiCOH") in a covalently bonded tri-dimensional network structure having a dielectric constant of less than about 3.0, a higher degree of crystalline bonding interactions, more carbon as methyl termination groups and fewer methylene, -CH 2 - crosslinking groups than prior art SiCOH dielectrics is provided. The SiCOH dielectric is characterized as having a FTIR spectrum comprising a peak area for CH 3 +CH 2 stretching of less than about 1.40, a peak area for SiH stretching of less than about 0.20, a peak area for SiCH 3 bonding of greater than about 2.0, and a peak area for Si-O-Si bonding of greater than about 60%, and a porosity of greater than about 20%.
Abstract:
An advanced back-end-of-line (BEOL) metallization structure is disclosed. The structure includes a diffusion barrier or cap layer having a low dielectric constant (low-k). The cap layer is formed of amorphous nitrogenated hydrogenated silicon cabride, and has a dielectric constant (k) of less than about 5. A method for forming the BEOL metallization structure is also disclosed, where the cap layer is deposited using a plasma-enhanced chemical vapor deposition (PE CVD) process. The invention is particularly useful in interconnect structure comprising low-k dielectric material for the inter-layer dielectric (ILD) and copper for the conductors.