Abstract:
The present invention provides two-transistor silicon-oxide-nitride-oxide-semiconductor (2-Tr SONOS) non-volatile memory cells with randomly accessible storage locations as well as method of fabricating the same, hi one embodiment, a 2-Tr SONOS cell is provided in which the select transistor is located within a trench structure having trench depth from 1 to 2 µm and the memory transistor is located on a surface of a semiconductor substrate adjoining the trench structure. In another embodiment, a 2-Tr SONOS memory cell is provided in which both the select transistor and the memory transistor are located within a trench structure having the depth mentioned above.
Abstract:
A DRAM memory cell and process sequence for fabricating a dense (20 or 18 square) layout is fabricated with silicon-on-insulator (SOI) CMOS technology. Specifically, the present invention provides a dense, high-performance SRAM cell replacement that is compatible with existing SOI CMOS technologies. Various gain cell layouts are known in the art. The present invention improves on the state of the art by providing a dense layout that is fabricated with SOI CMOS. In general terms, the memory cell includes a first transistor provided with a gate, a source, and a drain respectively; a second transistor having a first gate, a second gate, a source, and a drain respectively; and a capacitor having a first terminal, wherein the first terminal of said capacitor and the second gate of said second transistor comprise a single entity.
Abstract:
An ESD LUBISTOR structure based on FINFET technology employs a vertical fin (50) (a thin vertical member containing the source, drain and body of the device) in alternatives with and without a gate (60). The gate (60) may be connected to the external electrode (51) being protected to make a self-activating device and may be connected to a reference voltage (92). The device may be used in digital or analog circuits.
Abstract:
The present invention relates to a wrapped-gate transistor including a substrate having an upper surface and first and second side surfaces opposing to each other. Source and drain regions (28) are formed in the substrate with a channel region therebetween. The channel region extends from the first side surface to the second side surfaces of the substrate. A gate dielectric layer (40) is formed on the substrate. A gate electrode (42) is formed on the gate dielectric layer (40) to cover the channel region from the upper surface and the first and second side surfaces with the gate dielectric (40) therebetween. The substrate is a silicon island (12) formed on an insulation layer of an SOI (silicon-on-insulator) substrate or a conventional non-SOI substrate, and has four side surfaces including the first and second side surfaces. The source and drain regions (28) are formed on the portions of the substrate adjoining the third and fourth side surfaces which are perpendicular to the first and second side surfaces. The wrapped-gate structure provides a better and quicker potential control within the channel area, which yields steep sub-threshold slope and low sensitivity to the 'body-to-source' voltage.
Abstract:
A structure and process for fabricating embedded vertical DRAM cells includes fabricating vertical MOSFET DRAM cells with silicided polysilicon layers in the array regions, the landing pad and/or interconnect structures, the support source and drain regions and/or the gate stack. The process eliminates the need for a M0 metallization layer.
Abstract:
A structure and process for fabricating embedded vertical DRAM cells includes fabricating vertical MOSFET DRAM cells with silicided polysilicon layers in the array regions, the landing pad and/or interconnect structures, the support source and drain regions and/or the gate stack. The process eliminates the need for a M0 metallization layer.
Abstract:
PROBLEM TO BE SOLVED: To reduce the rough surface on a side wall of a trench of a trench capacitor by forming the trench capacitor in the shape of a bottle with the lower part of the treanch being larger than the upper part and covering a collar and an epitaxial buried plate from inside with a node dielectric. SOLUTION: A trench capacitor 310 included in a DRAM cell 300 is formed in a silicon wafer substrate 301. A lower part of a trench has a larger diameter or width WL than the diameter or width WU of an upper part. The trench of such a shape is called a bottle trench. And, an epitaxial silicon (epi) layer 365 covers the lower part of the trench below a collar 368 from inside. The epi is doped with an n-type dopant such as As or P and is used as a buried plate of a capacitor. By covering the lower part of the trench by the epi layer from inside, the rough surface to be formed with a node dielectric can be reduced.
Abstract:
PROBLEM TO BE SOLVED: To provide a trench capacitor, wherein the rough surface of a trench sidewall is suppressed. SOLUTION: In a trench capacitor 301, an epitaxial layer 365 is provided at the lower part of the trench. The epitaxial layer 365 is used as an embedded plate of the trench capacitor. Furthermore, the trench lower part is surrounded by a diffused region 367, which results in higher dopant concentration of the epitaxial layer 365. The diffused region 367 is formed through vapor-phase doping, plasma doping, or plasma infiltration ion implantation.
Abstract:
A DRAM memory cell and process sequence for fabricating a dense (20 or 18 square) layout is fabricated with silicon-on-insulator (SOI) CMOS technology. Specifically, the present invention provides a dense, high-performance SRAM cell replacement that is compatible with existing SOI CMOS technologies. Various gain cell layouts are known in the art. The present invention improves on the state of the art by providing a dense layout that is fabricated with SOI CMOS. In general terms, the memory cell includes a first transistor provided with a gate, a source, and a drain respectively; a second transistor having a first gate, a second gate, a source, and a drain respectively; and a capacitor having a first terminal, wherein the first terminal of said capacitor and the second gate of said second transistor comprise a single entity.
Abstract:
An electrically programmable fuse (eFuse) includes (1) a semiconducting layer above an insulating oxide layer of a substrate; (2) a diode formed in the semiconducting layer; and (3) a silicide layer formed on the diode. The diode comprises an N+,p-,P+ or P+,n-,N+ structure.