Abstract:
A method for providing an image of an internal region of a patient has been developed. The method reduces imaging artifacts by providing enhanced contrast between tissue and blood during imaging. The method comprises administering to a patient a contrast agent in combination with a renal vasodilator and performing ultrasound imaging of the region. Renal disease, including renal arterial stenosis, may be diagnosed using the method.
Abstract:
Novel silicon amphiphilic compounds which comprise a silicon residue. The silicon amphiphilic compounds are particularly suitable for use in compositions for diagnostic imaging, such as ultrasound. Compositions of the silicon amphiphilic compounds comprise a gas or gaseous precursor, and may take the form of vesicle compositions, such as micelles or liposomes.
Abstract:
Lyophilized lipid compositions, as well as methods for their preparation, are embodied by the present invention. Gas-filled microspheres prepared using the lyophilized lipid composition are particularly useful, for example, in ultrasonic imaging applications and in therapeutic drug delivery systems.
Abstract:
Methods for providing an image of an internal region of a patient. Embodiments of the methods involve administering to the patient a contrast agent which comprises a vesicle composition comprising, in an aqueous carrier, a gas or gaseous precursor and vesicles comprising lipids, proteins or polymers. The patient is scanned using diagnostic imaging, such as ultrasound, to obtain a visible image of the region. The contrast agent is administered to the patient at a rate to substantially eliminate diagnostic artifacts in the image. The methods are particularly useful for diagnosing the presence of any diseased tissue in the patient.
Abstract:
The present invention is directed, inter alia, to a method for delivering a compound into a cell comprising administering to the cell the compound to be delivered, an organic halide, and/or a carrier. Ultrasound may also be applied, if desired.
Abstract:
A novel method of magnetic resonance focused surgical ultrasound by administering to a patient a magnetic resonance imaging (MRI) contrast medium comprising gas filled vesicles, then scanning the patient with MRI techniques, and then applying ultrasound to effect surgery. These methods may also use an MRI contrast medium comprising gaseous precursor filled vesicles which undergo a phase transition from a liquid to gas in vivo after administration. Additionally, the MRI contrast medium may comprise a therapeutic compound.