Abstract:
A method for manufacturing a semiconductor device is provided. The method includes forming, on a substrate, a plurality of fins extending along a first direction; forming, on the fins, a dummy gate stack extending along a second direction; forming a gate spacer on opposite sides of the dummy gate stack in the first direction; epitaxially growing raised source/drain regions on the top of the fins on opposite sides of the gate spacer in the first direction; performing lightly-doping ion implantation through the raised source/drain regions with the gate spacer as a mask, to form source/drain extension regions in the fins on opposite sides of the gate spacer in the first direction; removing the dummy gate stack to form a gate trench; and forming a gate stack in the gate trench.
Abstract:
Methods of manufacturing stacked nanowires MOS transistors are disclosed. In one aspect, the method includes forming a plurality of fins along a first direction on a substrate. The method also includes forming stack of nanowires constituted of a plurality of nanowires in each of the fins. The method also includes forming a gate stack along a second direction in the stack of nanowires, the gate stack surrounding the stack of nanowires. The method also includes forming source/drain regions at both sides of the gate stack, the nanowires between the respective source/drain regions constituting a channel region. A stack of nanowires may be formed by a plurality of etching back, laterally etching a trench and filling the trench. The laterally etching process includes isotropic dry etching having an internally tangent and lateral etching, and a wet etching which selectively etches along respective crystallographic directions.
Abstract:
A semiconductor device includes a fin extending on a substrate along a first direction; a gate extending along a second direction across the fin; and source/drain regions and a gate spacer on the fin at opposite sides of the gate, in which there is a surface layer on the top and/or sidewalls of the fin.
Abstract:
Methods of manufacturing stacked nanowires MOS transistors are disclosed. In one aspect, the method includes forming a plurality of fins along a first direction on a substrate. The method also includes forming stack of nanowires constituted of a plurality of nanowires in each of the fins. The method also includes forming a gate stack along a second direction in the stack of nanowires, the gate stack surrounding the stack of nanowires. The method also includes forming source/drain regions at both sides of the gate stack, the nanowires between the respective source/drain regions constituting a channel region. A stack of nanowires may be formed by a plurality of etching back, laterally etching a trench and filling the trench. The laterally etching process includes isotropic dry etching having an internally tangent and lateral etching, and a wet etching which selectively etches along respective crystallographic directions.
Abstract:
A FinFET device and a method for manufacturing the same. The FinFET device includes a plurality of fins each extending in a first direction on a substrate; a plurality of gate stacks each being disposed astride the plurality of fins and extending in a second direction; a plurality of source/drain region pairs, respective source/drain regions of each source/drain region pair being disposed on opposite sides of the each gate stack in the second direction; and a plurality of channel regions each comprising a portion of a corresponding fin between the respective source/drain regions of a corresponding source/drain pair, wherein the each fin comprises a plurality of protruding cells on opposite side surfaces in the second direction.
Abstract:
A method for manufacturing a semiconductor device is provided. The method includes forming, on a substrate, a plurality of fins extending along a first direction; forming, on the fins, a dummy gate stack extending along a second direction; forming a gate spacer on opposite sides of the dummy gate stack in the first direction; epitaxially growing raised source/drain regions on the top of the fins on opposite sides of the gate spacer in the first direction; performing lightly-doping ion implantation through the raised source/drain regions with the gate spacer as a mask, to form source/drain extension regions in the fins on opposite sides of the gate spacer in the first direction; removing the dummy gate stack to form a gate trench; and forming a gate stack in the gate trench.
Abstract:
A method for manufacturing a semiconductor device is disclosed. In one aspect the method includes forming a gate stack over a substrate. The method also includes forming a dummy sidewall spacer around the gate stack. The method also includes depositing a stress liner of diamond-like amorphous carbon (DLC) on the substrate, the gate stack and the dummy sidewall spacer. The method also includes annealing, so that a channel region in the substrate below the gate stack and the gate stack memorize stress in the stress liner. The method also includes removing the dummy sidewall spacer. The method also includes forming a sidewall spacer around the gate stack. In the method according to the disclosed technology, large stress in the liner of DLC is memorized and applied to the dummy gate stack and the channel region.
Abstract:
A method for manufacturing a semiconductor device is disclosed. In one aspect the method includes forming a gate stack over a substrate. The method also includes forming a dummy sidewall spacer around the gate stack. The method also includes depositing a stress liner of diamond-like amorphous carbon (DLC) on the substrate, the gate stack and the dummy sidewall spacer. The method also includes annealing, so that a channel region in the substrate below the gate stack and the gate stack memorize stress in the stress liner. The method also includes removing the dummy sidewall spacer. The method also includes forming a sidewall spacer around the gate stack. In the method according to the disclosed technology, large stress in the liner of DLC is memorized and applied to the dummy gate stack and the channel region to increase carrier mobility and improve performances of the device.
Abstract:
The present invention discloses a method for manufacturing a semiconductor device, which comprises: forming a plurality of fins on a substrate, which extend along a first direction and have rhombus-like cross-sections; forming a gate stack structure on each fin, which traverses the plurality of fins and extends along a second direction; wherein a portion in each fin that is under the gate stack structure forms a channel region of the device, and portions in each fin that are at both sides of the gate stack structure along the first direction form source and drain regions. The semiconductor device and its manufacturing method according to the present invention use rhombus-like fins to improve the gate control capability to effectively suppress the short channel effect, moreover, an epitaxial quantum well is used therein to better limit the carriers, thus improving the device drive capability.
Abstract:
The present invention discloses a semiconductor device, comprising: a substrate, a gate stack structure on the substrate, source and drain regions in the substrate on both sides of the gate stack structure, and a channel region between the source and drain regions in the substrate, characterized in that at least one of the source and drain regions comprises a GeSn alloy. In accordance with the semiconductor device and method for manufacturing the same of the present invention, GeSn stressed source and drain regions with high concentration of Sn is formed by implanting precursors and performing a laser rapid annealing, thus the device carrier mobility of the channel region is effectively enhanced and the device drive capability is further improved.