Abstract:
A method and apparatus for implementing a dynamic display memory is provided. A memory control hub suitable for interposition between a central processor and a memory includes a graphics memory control component. The graphics memory control component determines whether operands accessed by the central processor are graphics operands. If so, the graphics memory control component transforms the virtual address supplied by the central processor to a system address suitable for use in locating the graphics operand in the memory. In one embodiment, the graphics control component maintains a graphics translation table in the memory and utilizes the graphics translation table in transforming virtual addresses to system addresses. Furthermore, in one embodiment, the graphics control component reorders the addresses of the graphics operands to optimize for performance memory accesses by a graphics device.
Abstract:
According to one embodiment, a computer system is disclosed that includes a memory and a memory controller coupled to the memory. The memory controller includes an arbitration unit that may be programmed to operate according to a first arbitration mode or a second arbitration mode. The computer system also includes a first device and a second device coupled to the arbitration unit. According to a further embodiment, the first device is assigned a higher priority classification than the second device for accessing the memory while the arbitration unit is operating according to the first arbitration mode. In addition, the first device and the second device are assigned equal priority classifications for accessing the memory while the arbitration unit is operating according to the second arbitration mode.
Abstract:
A method, apparatus, and system to concurrently render independent images for display on one or more display devices. In an embodiment, a graphics-rendering engine concurrently renders independent images for display on multiple display devices. A graphics context manager stores in a first memory area and restores from the first memory area information describing a first rendering context associated with a first independent image. The graphics context manager stores in a second memory area and restores from the second memory area information describing a second rendering context associated with a second independent image.
Abstract:
A method and apparatus for regulating the deferral of a transaction issued on a bus by a processor in a computer system is disclosed. A bus transaction recorder coupled to the bus processes encoded signals from the transaction issued on the bus. A line coupled to the bus sends an indication signal when a pending transaction request is issued on the bus. A CPU latency timer times the current transaction on the bus when a new pending transaction is waiting on the bus. The CPU latency timer outputs an expiration signal when the transaction takes more than a predetermined amount of time to complete. A transaction processor unit is coupled to the bus transaction recorder, the line, and the CPU latency timer. The transaction processor unit defers the transactions issued on the bus when the transaction processor receives the indication signal indicating that a pending transaction is waiting to be issued on the bus, when the encoded signals from the transaction issued on the bus indicate that the transaction issued on the bus is a candidate for deferral, and when the CPU latency timer outputs the expiration signal.
Abstract:
According to one embodiment, a computer system is disclosed that includes a memory and a memory controller coupled to the memory. The memory controller includes an arbitration unit that may be programmed to operate according to a first arbitration mode or a second arbitration mode. The computer system also includes a first device and a second device coupled to the arbitration unit. According to a further embodiment, the first device is assigned a higher priority classification than the second device for accessing the memory while the arbitration unit is operating according to the first arbitration mode. In addition, the first device and the second device are assigned equal priority classifications for accessing the memory while the arbitration unit is operating according to the second arbitration mode.
Abstract:
A method and apparatus for regulating the deferral of a transaction issued on a bus by a processor in a computer system is disclosed. A bus transaction recorder coupled to the bus processes encoded signals from the transaction issued on the bus. A line coupled to the bus sends an indication signal when a pending transaction request is issued on the bus. A CPU latency timer times the current transaction on the bus when a new pending transaction is waiting on the bus. The CPU latency timer outputs an expiration signal when the transaction takes more than a predetermined amount of time to complete. A transaction processor unit is coupled to the bus transaction recorder, the line, and the CPU latency timer. The transaction processor unit defers the transactions issued on the bus when the transaction processor receives the indication signal indicating that a pending transaction is waiting to be issued on the bus, when the encoded signals from the transaction issued on the bus indicate that the transaction issued on the bus is a candidate for deferral, and when the CPU latency timer outputs the expiration signal.
Abstract:
A method, apparatus, and system to concurrently render independent images for display on one or more display devices. In an embodiment, a graphics-rendering engine concurrently renders independent images for display on multiple display devices. A time allocator arbitrates the concurrent use of the graphics-rendering engine between each independent image being rendered.
Abstract:
A METHOD AND APPARATUS FOR REGULATING THE DEFERRAL OF A TRANSACTION ISSUED ON A BUS (120) BY A PROCESSOR IN A COMPUTER SYSTEM IS DISCLOSED. A BUS TRANSACTION RECORDER (221) COUPLED TO THE BUS PROCESSES ENCODED SIGNALS FROM THE TRANSACTION ISSUED ON THE BUS. A LINE COUPLED TO THE BUS SENDS AN INDICATION SIGNAL WHEN A PENDING TRANSACTION REQUEST IS ISSUED ON THE BUS. A CPU LATENCY TIMER TIMES THE CURRENT TRANSACTION ON THE BUS WHEN A NEW PENDING TRANSACTION IS WAITING ON THE BUS (120). THE CPU LATENCY TIMER OUTPUTS AN EXPIRATION SIGNAL WHEN THE TRANSACTION TAKES MORE THAN A PREDETERMINED AMOUNT OF TIME TO COMPLETE. A TRANSACTION PROCESSOR UNIT (222) IS COUPLED TO THE BUS TRANSACTION RECORDER (221), THE LINE, AND THE CPU LATENCY TIMER. THE TRANSACTION PROCESSOR UNIT (222) DEFERS THE TRANSACTIONS ISSUED ON THE BUS WHEN THE TRANSACTION PROCESSOR RECEIVES THE INDICATION SIGNAL INDICATING THAT A PENDING TRANSACTION IS WAITING TO BE ISSUED ON THE BUS (120), WHEN THE ENCODED SIGNALS FROM THE TRANSACTION ISSUED ON THE BUS (120) INDICATE THAT THE TRANSACTION ISSUED ON THE BUS (120) IS A CANDIDATE FOR DEFERRAL, AND WHEN THE CPU LATENCY TIMER OUTPUTS THE EXPIRATION SIGNAL. (FIG.1)
Abstract:
A depth write disable apparatus and method for controlling evictions, such as depth values, from a depth cache to a corresponding depth buffer in a zone rendering system. When the depth write disable circuitry is enabled, evictions from the depth cache (as which typically occur during the rendering of the next zone) to the depth buffer are prevented. In particular, once the depth buffer is initialized (i.e. cleared) to a constant value at the beginning of a scene, the depth buffer does not need to be read. The depth cache handles intermediate depth reads and writes within each zone. Since the memory resident depth buffer is not required after a scene is rendered, it never needs to be written. The final depth values for a zone can thus be discarded (i.e., rather than written to the depth buffer) after each zone is rendering.
Abstract:
A method and apparatus for regulating the deferral of a transaction issued on a bus by a processor in a computer system is disclosed. A bus transaction recorder coupled to the bus processes encoded signals from the transaction issued on the bus. A line coupled to the bus sends an indication signal when a pending transaction request is issued on the bus. A CPU latency timer times the current transaction on the bus when a new pending transaction is waiting on the bus. The CPU latency timer outputs an expiration signal when the transaction takes more than a predetermined amount of time to complete. A transaction processor unit is coupled to the bus transaction recorder, the line, and the CPU latency timer. The transaction processor unit defers the transactions issued on the bus when the transaction processor receives the indication signal indicating that a pending transaction is waiting to be issued on the bus, when the encoded signals from the transaction issued on the bus indicate that the transaction issued on the bus is a candidate for deferral, and when the CPU latency timer outputs the expiration signal.