Abstract:
PROBLEM TO BE SOLVED: To provide a flat solder grid array for a surface mounting component of a printed circuit board.SOLUTION: A standoff contact array is disposed between a mount substrate of a flip-flop package and a board (410). The stand off contact array may be formed by joining flat solder bumps on the mount substrate with flat solder pastes on the board (430). After joining, the standoff contact array is formed by re-flowing the flat solder pastes on the board to the flat solder bumps on the mount substrate (440).
Abstract:
PROBLEM TO BE SOLVED: To provide a low profile solder grid array for components surface-mounted on a printed circuit board. SOLUTION: A standoff contact array is arranged between a mounting substrate of a flip-chip package and a board. The standoff contact array can be formed by mating a low-profile solder bump on the mounting substrate with a low-profile solder paste on the board. Thereafter, the standoff contact array is formed by reflowing the low-profile solder paste on the board against the low-profile solder bump on the mounting substrate. COPYRIGHT: (C)2010,JPO&INPIT
Abstract:
Disclosed are embodiments of a system-level assembly including an integrated circuit (IC) die directly attached to a mainboard. An IC die directly attached to a mainboard or other circuit board may be referred to as a direct-chip attach (DCA) die. A package is disposed over at least a portion of the DCA die and coupled with the mainboard. The package includes one or more other IC die disposed on a substrate. Other embodiments are described and claimed.
Abstract:
An enhanced joint thickness lead used for surface mounting electronic devices to a substrate, wherein a portion of the enhanced joint thickness lead that is substantially parallel to the substance. The enhanced joint thickness lead includes an arcuate structure, which provides an enhanced joint thickness for the solder used to connect the lead to the substrate. The enhanced joint thickness of the solder results in a more robust attachment of the electronic device.
Abstract:
Disclosed are embodiments of a system-level assembly including an integrated circuit (IC) die directly attached to a mainboard. An IC die directly attached to a mainboard or other circuit board may be referred to as a direct-chip attach (DCA) die. A package is disposed over at least a portion of the DCA die and coupled with the mainboard. The package includes one or more other IC die disposed on a substrate. Other embodiments are described and claimed.
Abstract:
An enhanced joint thickness lead used for surface mounting electronic devices to a substrate, wherein a portion of the enhanced joint thickness lead that is substantially parallel to the substance. The enhanced joint thickness lead includes an arcuate structure, which provides an enhanced joint thickness for the solder used to connect the lead to the substrate. The enhanced joint thickness of the solder results in a more robust attachment of the electronic device.
Abstract:
An enhanced joint thickness lead used for surface mounting electronic devices to a substrate, wherein a portion of the enhanced joint thickness lead that is substantially parallel to the substance. The enhanced joint thickness lead includes an arcuate structure, which provides an enhanced joint thickness for the solder used to connect the lead to the substrate. The enhanced joint thickness of the solder results in a more robust attachment of the electronic device.
Abstract:
Piezoelectric wafers are affixed to a circuit card to control displacement of the circuit card when vibrated. A trigger wafer located at an anti-node of the dominant mode shape produces a voltage as a function of modal displacement. A control system responsive to the trigger wafer produces voltages that are applied to flex wafers at a different anti-node of the dominant mode shape. The flex wafers expand and contract in a manner that reduces the modal displacement of the circuit card. Multiple flex wafers can exist, affixed to the circuit card substantially opposite each other, or a single flex wafer can exist with a single trigger wafer. The trigger wafer can be located substantially opposite the flex wafer or can be located elsewhere on the circuit card.
Abstract:
A semiconductor substrate with integrated circuit devices on its front side and a high thermal conductivity layer such as diamond on its back side, with components such as capacitors embedded in the high thermal conductivity layer and coupled to the front side integrated circuits with vias through the substrate.
Abstract:
Piezoelectric wafers are affixed to a circuit card to control displacement of the circuit card when vibrated. A trigger wafer located at an anti-node of the dominant mode shape produces a voltage as a function of modal displacement. A control system responsive to the trigger wafer produces voltages that are applied to flex wafers at a different anti-node of the dominant mode shape. The flex wafers expand and contract in a manner that reduces the modal displacement of the circuit card. Multiple flex wafers can exist, affixed to the circuit card substantially opposite each other, or a single flex wafer can exist with a single trigger wafer. The trigger wafer can be located substantially opposite the flex wafer or can be located elsewhere on the circuit card.