Abstract:
An electrical device includes a redistribution layer structure, an inter-diffusing material contact structure and a vertical electrically conductive structure located between the redistribution layer structure and the inter-diffusing material contact structure. The vertical electrically conductive structure includes a diffusion barrier structure located adjacently to the inter-diffusing material contact structure. Further, the diffusion barrier structure and the redistribution layer structure comprise different lateral dimensions.
Abstract:
An apparatus including an electrostatic discharge circuit including a first circuit portion coupled beneath a die contact pad of an integrated circuit die and a second circuit portion in an interposer separate from the integrated circuit die, the interposer including a first contact point coupled to the contact pad of the integrated circuit die and a second contact point operable for connection to an external source. A method including forming an integrated circuit die including a first electrostatic discharge structure beneath a contact pad of the die; and coupling the die to an interposer including an interposer contact and a second electrostatic discharge structure, wherein a signal at the contact pad of the die is operable to be routed through the interposer.
Abstract:
An apparatus is described that includes a redistribution layer and a semiconductor die on the redistribution layer. An electrically conductive layer resides over the semiconductor die. A compound mold resides over the electrically conductive layer.
Abstract:
Embodiments may relate to an embedded package having a diffusion barrier layer may be placed between a copper (Cu) pad and a solder ball inside the embedded package. During the solder reflow process, an intermetallic compound (IMC) layer is created that does not come into contact with the Cu, so that subsequent high temperatures applied to the embedded package may not cause the Cu to be consumed through diffusion. Other embodiments may be described and/or claimed.
Abstract:
Embodiments herein generally relate to the field of package assembly to facilitate thermal conductivity. A package may have a hanging die, and attach to a printed circuit board (PCB). The package may have an active side plane and an inactive side plane opposite the first active side plane. The package may also have a ball grid array (BGA) matrix having a height determined by a distance of a furthest point of the BGA matrix from the active side plane of the package. The package may have a hanging die attached to the active side plane of the package, the hanging die having a z-height greater than the BGA matrix height. When package is attached to the PCB, the hanging die may fit into an area on the PCB that is recessed or has been cut away, and a thermal conductive material may connect the hanging die and the PCB.
Abstract:
An apparatus is described that includes a redistribution layer and a semiconductor die on the redistribution layer. An electrically conductive layer resides over the semiconductor die. A compound mold resides over the electrically conductive layer.
Abstract:
An apparatus is described that includes a semiconductor die package. The semiconductor die package includes a semiconductor die package substrate having a top side and a bottom side. The semiconductor die package includes I/O balls on the bottom side of the semiconductor die package substrate. The I/O balls are to mount to a planar board. The semiconductor die package includes a first semiconductor die mounted on the bottom side of the semiconductor die package substrate. The first semiconductor die is vertically located between the bottom side of the semiconductor die package substrate and a second semiconductor die that is a part of the semiconductor die package.
Abstract:
Embodiments of the invention include an eWLB or ePLB based PoP device and methods of forming such devices. According to an embodiment, such a device may include a die embedded within a mold layer. A substrate may be directly contacting a surface of the mold layer. Additionally, embodiments of the invention may include a through mold via formed through the mold layer that is electrically coupled to a contact formed on a surface of the substrate that is contacting the mold layer. In order to form such a device, embodiments may include dispensing a molding material over a die positioned on a mold carrier. Thereafter, a substrate may be pressed into the molding material. After curing the molding material, a mold layer may be formed that encases the die and is adhered to the substrate.
Abstract:
Embodiments are generally directed to package stacking using chip to wafer bonding. An embodiment of a device includes a first stacked layer including one or more semiconductor dies, components or both, the first stacked layer further including a first dielectric layer, the first stacked layer being thinned to a first thickness; and a second stacked layer of one or more semiconductor dies, components, or both, the second stacked layer further including a second dielectric layer, the second stacked layer being fabricated on the first stacked layer.
Abstract:
The present disclosure describes embodiments of a stacked semiconductor device package and associated techniques and configurations. A package may include a packaging substrate having interconnects and a first semiconductor device attached to one side and a second semiconductor device attached to the opposite side. The devices may be attached in a flip chip configuration with pad sides facing each other on opposite sides of the substrate. The devices may be electrically coupled by the interconnects. The devices may be electrically coupled to fan out pads on the substrate. A dielectric layer may be coupled to the second side of the substrate and encapsulate the second device. Vias may route electrical signals from the fan out area through the dielectric layer and into a redistribution layer coupled to the dielectric layer. Other embodiments may be described and/or claimed.