Abstract:
A system and method for controlling a remote vehicle (2) comprises a hand-held controller (4) including a laser generator (5) for generating a laser beam (6). The hand-held controller (4) is manipulate to aim and actuate the laser beam to designate a destination for the remote vehicle (2). The remote vehicle senses a reflection of the laser beam and moves toward the designated destination. The hand-held controller allows single-handed control of the remote vehicle and one or more of its payloads. A method for controlling a remote vehicle (2) via a laser beam (6) comprises encoding control signals for a remote vehicle into a laser beam that is aimed and sent to a designated destination for the remote vehicle, and sensing a reflection of the laser beam, decoding the control signals for the remote vehicle, and moving toward the designated destination.
Abstract:
A mobile robot (100) that includes a drive system (200), a controller (500) in communication with the drive system, and a volumetric point cloud imaging device (450) supported above the drive system at a height of greater than about one feet above the ground and directed to be capable of obtaining a point cloud from a volume of space that includes a floor plane in a direction of movement of the mobile robot. The controller receives point cloud signals from the imaging device and issues drive commands to the drive system based at least in part on the received point cloud signals.
Abstract:
A mobile robot (100) including a drive system (200) having a forward drive direction (F), a controller (500) in communication with the drive system, and a volumetric point cloud imaging device (450) supported above the drive system and directed to be capable of obtaining a point cloud from a volume of space that includes a floor plane (5) in a direction of movement of the mobile robot. A dead zone sensor (490) has a detection field (492) arranged to detect an object in a volume of space (453) undetectable by the volumetric point cloud imaging device. The controller receives point cloud signals from the imaging device and detection signals from the dead zone sensor and issues drive commands to the drive system based at least in part on the received point cloud and detection signals.
Abstract:
A robot system (1600) includes a mobile robot (100) having a controller (500) executing a control system (510) for controlling operation of the robot, a cloud computing service (1620) in communication with the controller of the robot, and a remote computing device (310) in communication with the cloud computing service. The remote computing device communicates with the robot through the cloud computing service.
Abstract:
A system increases an operator's situational awareness while the operator controls a remote vehicle. The system comprises an operator control unit having a point-and-click interface configured to allow the operator to view an environment surrounding the remote vehicle and control the remote vehicle, and a payload attached to the remote vehicle and in communication with at least one of the remote vehicle and the operator control unit. The payload comprises an integrated sensor suite including GPS, an inertial measurement unit, a stereo vision camera, and a range sensor, and a computational module receiving data from the GPS, the inertial measurement unit, the stereo vision camera, and the range sensor and providing data to a CPU including at least one of an autonomous behavior and a semi-autonomous behavior that utilize data from the integrated sensor suite.
Abstract:
A mobile robot (100) that includes a drive system (200), a controller (500) in communication with the dive system, and an electronic display (310, 312) supported above the drive system and in communication with the controller. The controller includes a central processing unit (502), a general purpose graphics processing unit (504), and memory (506) in electrical communication with the central processing unit and the general purpose graphics processing unit. Moreover, the controller has a display operating state and a driving operating state. The controller executes graphics computations on the general purpose graphics processing unit for displaying graphics on the electronic display during the display operating state; and the controller executes mobility computations on the general purpose graphics processing unit for issuing commands to the drive system during the driving operating state.
Abstract:
An operator control unit having a user interface that allows a user to control a remote vehicle, the operator control unit comprising: a transmission unit configured to transmit data to the remote vehicle; a receiver unit configured to receive data from the remote vehicle, the data received from the remote vehicle comprising image data captured by the remote vehicle; and a display unit configured to display a user interface comprising the image data received from the remote vehicle and icons representing a plurality of controllable elements of the remote vehicle, and configured to allow the user to input a control command to control at least one of the plurality of controllable elements. Inputting a control command to control the at least one controllable element comprises selecting the icon representing the at least one controllable element, inputting an action for the at least one controllable element, and requesting that the at least one controllable element performs the action.
Abstract:
Systems and methods for autonomous control of a vehicle include interruptible, behavior-based, and selective control. Autonomous control is achieved by using actuators that interact with input devices in the vehicle. The actuators (e.g., linkages) manipulate the input devices (e.g., articulation controls and drive controls, such as a throttle, brake, tie rods, steering gear, throttle lever, or accelerator) to direct the operation of the vehicle. Although operating autonomously, manual operation of the vehicle is possible following the detection of events that suggest manual control is desired. Subsequent autonomous control may be permitted, permitted after a prescribed delay, or prevented. Systems and methods for processing safety signals and/or tracking terrain features are also utilized by an autonomous vehicle.
Abstract:
A robot system includes a mobile robot having a controller executing a control system for controlling operation of the robot, a cloud computing service in communication with the controller of the robot, and a remote computing device in 5 communication with the cloud computing service. The remote computing device communicates with the robot through the cloud computing service. 310 -6 Head Neck 450, 450b 150 Torso 148 140 -110 Shoulder 142 144 450 360 450a CGL 130 Leg 452'13 Base 410 440 1-----20 z y x
Abstract:
A mobile robot (100) including a drive system (200) having a forward drive direction (F), a controller (500) in communication with the drive system, and a volumetric point cloud imaging device (450) supported above the drive system and directed to be capable of obtaining a point cloud from a volume of space that includes a floor plane (5) in a direction of movement of the mobile robot. A dead zone sensor (490) has a detection field (492) arranged to detect an object in a volume of space (453) undetectable by the volumetric point cloud imaging device. The controller receives point cloud signals from the imaging device and detection signals from the dead zone sensor and issues drive commands to the drive system based at least in part on the received point cloud and detection signals.