Abstract:
PROBLEM TO BE SOLVED: To develop a method for an optical tool, the method being designed to use light that is at least partially absorbed by air, and having more efficient parging system. SOLUTION: The method includes: a step of measuring reflectivity measurement data, and dispersion and polarization analysis data for the specimen; a step of determining thickness of a nitroxide gate dielectric formed on the specimen from the reflectivity measurement data; a step of determining refractive index of the nitroxide gate dielectric from the thickness and dispersion and polarization analysis data; and a step of determining nitrogen concentration of the nitroxide gate dielectric from the refractive index. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
Strukturparameter einer Probe werden bestimmt, indem Modelle der Antwort der Probe auf die Messungen, die von unterschiedlichen Messverfahren in einer kombinierten Untersuchung aufgenommen wurden, angepasst werden. Modelle der Antwort der Probe von mindestens zwei unterschiedlichen Messtechnologien teilen mindestens einen gemeinsamen geometrischen Parameter. In einigen Ausführungsformen führt eine modellbildende und analysierende Maschine, röntgen und optische Analysen durch, wobei mindestens ein gemeinsamer Parameters während der Analyse gekoppelt ist. Der Fit der Antwortmodelle an die Messdaten kann, sequentiell, parallel, oder mittels einer Kombination von sequentieller und paralleler Analysen durchgeführt werden. Gemäß einem weiteren Aspekt wird die Struktur der Antwortmodelle basierend auf der Güte der Anpassung zwischen den Modellen und der entsprechenden Messdaten verändert. Beispielsweise wird ein geometrisches Modell der Probe basierend auf dem Fit zwischen den Antwortmodellen und der entsprechenden Messdaten restrukturiert.
Abstract:
The present invention includes generating a three-dimensional design of experiment (DOE) for a plurality of semiconductor wafers, a first dimension of the DOE being a relative amount of a first component of the thin film, a second dimension of the DOE being a relative amount of a second component of the thin film, a third dimension of the DOE being a thickness of the thin film, acquiring a spectrum for each of the wafers, generating a set of optical dispersion data by extracting a real component (n) and an imaginary component (k) of the complex index of refraction for each of the acquired spectrum, identifying one or more systematic features of the set of optical dispersion data; and generating a multi-component Bruggeman effective medium approximation (BEMA) model utilizing the identified one or more systematic features of the set of optical dispersion data.
Abstract:
Methods and systems for determining band structure characteristics of high-k dielectric films deposited over a substrate based on spectral response data are presented. High throughput spectrometers are utilized to quickly measure semiconductor wafers early in the manufacturing process. Optical dispersion metrics are determined based on the spectral data. Band structure characteristics such as band gap, band edge, and defects are determined based on optical dispersion metric values. In some embodiments a band structure characteristic is determined by curve fitting and interpolation of dispersion metric values. In some other embodiments, band structure characteristics are determined by regression of a selected dispersion model. In some examples, band structure characteristics indicative of band broadening of high-k dielectric films are also determined. The electrical performance of finished wafers is estimated based on the band structure characteristics identified early in the manufacturing process.