Abstract:
A multi-layer circuit board capable of being applied with electrical testing includes a patterned metal-interface layer, a metallic delivery loading plate, an electrical connection layer, a conductive corrosion-barrier layer, a bottom dielectric layer, and a multi-layer circuit structure. The multi-layer circuit structure is disposed on the delivery loading plate through the bottom dielectric layer. The top-layer circuit of the multi-layer circuit structure is electrically connected to the conductive corrosion-barrier layer through the bottom-layer circuit and the electrical connection layer. The delivery loading plate and the patterned metal-interface layer expose the conductive corrosion-barrier layer. Therefore, before the multi-layer circuit board is packaged, an electrical testing can be applied to the multi-layer circuit board to check if it can be operated normally. Hence, costs for figuring out reasons of the unqualified electronic component can be reduced, and responsibilities for the unqualified electrical testing result of the electronic component can be clarified.
Abstract:
A method for manufacturing microthrough-hole includes electroplating a metal layer on a carrier plate, patterning the metal layer to form a first circuit having copper pads, covering the first circuit with a photoresist layer and not covering the copper window between two of the copper pads, etching the metal layer beneath the copper window and removing the photoresist layer, sequentially forming an insulation layer and a second circuit on the first circuit and the copper window, the second circuit layer having a stop pad corresponding to the copper window, removing the carrier plate, upward drilling through the insulation layer between the stop pad and the copper window to form a microthrough-hole beneath the stop pad, and forming a conductive layer in the microthrough-hole to form the microthrough-hole connecting the first and second circuits. The microthrough-hole and its occupied area is greatly reduced, thereby achieving high circuit density.
Abstract:
A method of manufacturing a chip support board structure which includes the steps of forming a metal substrate structure, forming a photo resist pattern, etching the metal substrate structure to form a paddle, removing the photo resist pattern, pressing an insulation layer against the paddle, polishing the insulation layer, forming a circuit layer and forming a solder resist is disclosed. The metal substrate structure is formed by sandwiching a block layer with two metal substrate layers, multilayer. The metal substrate structure is etched under control to an effective depth such that each paddle thus formed has the same shape and depth. Therefore, the method of the present invention can be widely applied to the general mass production processes to effectively solve the problems in the prior arts due to depth differences, such offset, position mismatch and peeling off in the chip support board.
Abstract:
A laminate circuit board structure which includes a first circuit metal layer, a first insulation layer, at least one second circuit metal layer, at least one second insulation layer and a support frame is disclosed. The total thickness of the laminate circuit board structure is less than 150 μm. The support frame provided at the outer edge of the co-plane surface formed by the first circuit metal layer and the first insulation layer does not cover the first circuit metal layer, and is formed of at least one metal material. The support frame provides physical support for the entire board structure without influence on the circuit connection so as to prevent the laminate circuit board structure from warping.
Abstract:
A method of manufacturing a chip support board structure which includes the steps of forming a metal substrate structure, forming a photo resist pattern, etching the metal substrate structure to form a paddle, removing the photo resist pattern, pressing an insulation layer against the paddle, polishing the insulation layer, forming a circuit layer and forming a solder resist is disclosed. The metal substrate structure is formed by sandwiching a block layer with two metal substrate layers, multilayer. The metal substrate structure is etched under control to an effective depth such that each paddle thus formed has the same shape and depth. Therefore, the method of the present invention can be widely applied to the general mass production processes to effectively solve the problems in the prior arts due to depth differences, such offset, position mismatch and peeling off in the chip support board.
Abstract:
A multi-layer circuit board capable of being applied with electrical testing includes a metallic delivery loading plate, a bottom-layer circuit structure, a conductive corrosion-barrier layer, and a multi-layer circuit structure. The bottom-layer circuit structure is overlapping on the delivery loading plate. The conductive corrosion-barrier layer is disposed on the bottom dielectric layer. The multi-layer circuit structure is overlapping on the bottom-layer circuit structure. The top-layer circuit of the multi-layer circuit structure is electrically connected to the conductive corrosion-barrier layer through the inner-layer circuit of the multi-layer circuit structure and the bottom-layer circuit of the bottom-layer circuit structure. The delivery loading plate and the bottom dielectric layer of the bottom-layer circuit structure expose the conductive corrosion-barrier layer.
Abstract:
A manufacturing method for a multi-layer circuit board is provided. The multi-layer circuit structure is disposed on the delivery loading plate through the bottom dielectric layer, the delivery loading plate and the patterned metal interface layer expose the conductive corrosion-barrier layer, and the top-layer circuit of the multi-layer circuit structure is electrically connected to the conductive corrosion-barrier layer through the bottom-layer circuit and the electrical connection layer. Therefore, before the multi-layer circuit board is delivered to the assembly company or before the multi-layer circuit board is packaged with chips, an electrical testing can be applied to the multi-layer circuit board to check if the multi-layer circuit board can be operated normally or not.
Abstract:
A method of manufacturing a multilayer substrate structure includes the steps of pre-treatment, pressing and post-treatment. A carrier plate provided with a circuit pattern layer is pressed against a plastic sheet. An interlayer connection pad is formed by drilling and filling the lower surface of the plastic sheet. The carrier plate, the plastic sheet, another plastic sheet and another carrier plate with a circuit pattern layer are pressed together, and then drilled/filled to form a multilayer stacked structure such that the two circuit pattern layers are indirectly and electrically connected to the interlayer connection pad, respectively. Therefore, it is possible to overcome the problem due to alignment tolerance by using the interlayer connection pad wider than alignment tolerance, and stacking the circuit layers, each having much finer line and smaller pitch.
Abstract:
A method of manufacturing a multilayer substrate structure includes the steps of pre-treatment, pressing and post-treatment. A carrier plate provided with a circuit pattern layer is pressed against a plastic sheet. An interlayer connection pad is formed by drilling and filling the lower surface of the plastic sheet. The carrier plate, the plastic sheet, another plastic sheet and another carrier plate with a circuit pattern layer are pressed together, and then drilled/filled to form a multilayer stacked structure such that the two circuit pattern layers are indirectly and electrically connected to the interlayer connection pad, respectively. Therefore, it is possible to overcome the problem due to alignment tolerance by using the interlayer connection pad wider than alignment tolerance, and stacking the circuit layers, each having much finer line and smaller pitch.
Abstract:
Disclosed is a stacked multilayer structure, including a first circuit layer having bumps, a plastic film stacked on the first circuit layer to fill up the space among the bumps so as to form a co-plane, and a second circuit layer formed on the co-plane and connected to the first circuit layer. The plastic film includes a glass fiber layer which is embedded and not exposed. The adhesion between plastic film and the second circuit layer is greatly improved because the glass fiber layer of the plastic film filling up the space among the bumps is not deformed and exposed outwards. Therefore, the yield and reliability of the stacked multilayer structure is increased.