Abstract:
A lower electrode assembly for use in a plasma processing chamber comprises a metal base and upper and lower edge rings. The metal base comprises metal plates brazed together and forming a brazed line on a lower side surface of the base, an edge ring support surface extending horizontally inwardly from the lower side surface and an upper side surface above the edge ring support surface. The upper edge ring comprises a lower surface mounted on the edge ring support surface and the lower edge ring surrounds the lower side surface of the base with a gap between opposed surfaces of the upper and lower edge rings and between the lower edge ring and the outer periphery of the base. The gap has an aspect ratio of total gap length to average gap width sufficient to impede arcing at the location of the braze line.
Abstract:
A thermal plate for a substrate support assembly in a semiconductor plasma processing apparatus, comprises multiple independently controllable planar thermal zones arranged in a scalable multiplexing layout, and electronics to independently control and power the planar heater zones. Each planar thermal zone uses at least one Peltier device as a thermoelectric element. A substrate support assembly in which the thermal plate is incorporated includes an electrostatic clamping electrode layer and a temperature controlled base plate. Methods for manufacturing the thermal plate include bonding together ceramic or polymer sheets having planar thermal zones, positive, negative and common lines and vias.
Abstract:
Abstract A plasma etching system having a substrate support assembly with multiple independently controllable heater zones. The plasma etching system is configured to control etching temperature of predetermined locations so that pre-etch and/or post-etch non-uniformity of critical device parameters can be compensated for.
Abstract:
A lower electrode assembly for use in a plasma processing chamber comprises a metal base and upper and lower edge rings. The metal base comprises metal plates brazed together and forming a brazed line on a lower side surface of the base, an edge ring support surface extending horizontally inwardly from the lower side surface and an upper side surface above the edge ring support surface. The upper edge ring comprises a lower surface mounted on the edge ring support surface and the lower edge ring surrounds the lower side surface of the base with a gap between opposed surfaces of the upper and lower edge rings and between the lower edge ring and the outer periphery of the base. The gap has an aspect ratio of total gap length to average gap width sufficient to impede arcing at the location of the braze line.
Abstract:
A heating plate for a substrate support assembly in a semiconductor plasma processing apparatus, comprises multiple independently controllable planar heater zones arranged in a scalable multiplexing layout, and electronics to independently control and power the planar heater zones. Each planar heater zone uses at least one diode as a heater element. A substrate support assembly in which the heating plate is incorporated includes an electrostatic clamping electrode and a temperature controlled base plate. Methods for manufacturing the heating plate include bonding together ceramic or polymer sheets having planar heater zones, power supply lines, power return lines and vias.
Abstract:
Abstract A plasma etching system having a substrate support assembly with multiple independently controllable heater zones. The plasma etching system is configured to control etching temperature of predetermined locations so that pre-etch and/or post-etch non-uniformity of critical device parameters can be compensated for.
Abstract:
An edge seal for sealing an outer surface of a lower electrode assembly configured to support a semiconductor substrate in a plasma processing chamber, the lower electrode assembly including an annular groove defined between a lower member and an upper member of the lower electrode assembly. The edge seal includes an elastomeric band configured to be arranged within the groove, the elastomeric band having an annular upper surface, an annular lower surface, an inner surface, and an outer surface. When the elastomeric band is in an uncompressed state, the outer surface of the elastomeric band is concave. When the upper and lower surfaces are axially compressed at least 1% such that the elastomeric band is in a compressed state, an outward bulging of the outer surface is not greater than a predetermined distance. The predetermined distance corresponds to a maximum outer diameter of the elastomeric band in the uncompressed state.
Abstract:
An edge seal for sealing an outer surface of a lower electrode assembly configured to support a semiconductor substrate in a plasma processing chamber, the lower electrode assembly including an annular groove defined between a lower member and an upper member of the lower electrode assembly. The edge seal includes an elastomeric band configured to be arranged within the groove, the elastomeric band having an annular upper surface, an annular lower surface, an inner surface, and an outer surface. When the elastomeric band is in an uncompressed state, the outer surface of the elastomeric band is concave. When the upper and lower surfaces are axially compressed at least 1% such that the elastomeric band is in a compressed state, an outward bulging of the outer surface is not greater than a predetermined distance. The predetermined distance corresponds to a maximum outer diameter of the elastomeric band in the uncompressed state.