Abstract:
A chamber formed from an electrically conductive material is connected to a ground potential. A hot electrode formed from an electrically conductive material is disposed within the chamber in a substantially horizontal orientation and is physically separated from the chamber. The hot electrode includes a top surface defined to support a part to be measured. A radiofrequency (RF) transmission rod is connected to extend from a bottom surface of the hot electrode through an opening in a bottom of the chamber and be physically separated from the chamber. The RF transmission rod is defined to transmit RF power from a conductor plate in an electrical components housing to the hot electrode. An upper electrode formed from an electrically conductive material is disposed within the chamber in a substantially horizontal orientation. The upper electrode is electrically connected to the chamber and is defined to be movable in a vertical direction.
Abstract:
A method of tuning the thermal conductivity of an electrostatic chuck (ESC) support assembly comprises measuring the temperature at a plurality of sites on a support assembly surface in which each site is associated with a given cell, determining from the measurements any fractional reduction in area suggested for each cell, and removing material from the support assembly surface within each cell in accordance with the suggested fractional reduction in order to decrease thermal conductivity in that cell. The material removal can result in an improvement to the equilibrium temperature uniformity of the electrostatic chuck support assembly at the chuck surface of an electrostatic chuck bonded to the support assembly surface, or can result in an equilibrium temperature profile of the ESC support assembly which approaches or achieves a target equilibrium temperature profile. Thermal conductivity tuning can thus take place by a method comprising defining a cell structure, determining the target areal density of each cell and removing a fractional area of material to achieve the target areal density for that cell. Material removal can be effected by drilling, routing, laser machining or grit blast machining on an X-Y table.
Abstract:
An apparatus for control of a temperature of a substrate has a temperaturecontrolled base, a heater, a metal plate, a layer of dielectric material. The heater is thermally coupled to an underside of the metal plate while being electrically insulated from the metal plate. A first layer of adhesive material bonds the metal plate and the heater to the top surface of the temperature controlled base. This adhesive layer is mechanically flexible, and possesses physical properties designed to balance the thermal energy of the heaters and an external process to provide a desired temperature pattern on the surface of the apparatus. A second layer of adhesive material bonds the layer of dielectric material to a top surface of the metal plate. This second adhesive layer possesses physical properties designed to transfer the desired temperature pattern to the surface of the apparatus. The layer of dielectric material forms an electrostatic clamping mechanism and supports the substrate.
Abstract:
A plasma processing system for processing a substrate is described. The plasma processing system includes a bottom piece (250) including a chuck (216) configured for holding the substrate (224). The plasma processing system also includes an induction coil (231) configured to generate an electromagnetic field (242) in order to create a plasma (220) for processing the substrate; and an optimized top piece (244) coupled to the bottom piece, the top piece further configured for a heating and cooling system (246). Wherein, the heating and cooling system is substantially shielded from the electromagnetic field by the optimized top piece, and the optimized top piece can substantially be handled by a single person.
Abstract:
A thermal plate for a substrate support assembly in a semiconductor plasma processing apparatus, comprises multiple independently controllable planar thermal zones arranged in a scalable multiplexing layout, and electronics to independently control and power the planar heater zones. Each planar thermal zone uses at least one Peltier device as a thermoelectric element. A substrate support assembly in which the thermal plate is incorporated includes an electrostatic clamping electrode layer and a temperature controlled base plate. Methods for manufacturing the thermal plate include bonding together ceramic or polymer sheets having planar thermal zones, positive, negative and common lines and vias.
Abstract:
A substrate support useful in a reaction chamber of a plasma processing apparatus is provided. The substrate support comprises a base member and a heat transfer member overlying the base member. The heat transfer member has multiple zones to individually heat and cool each zone of the heat transfer member. An electrostatic chuck overlies the heat transfer member. The electrostatic chuck has a support surface for supporting a substrate in a reaction chamber of the plasma processing apparatus. A source of cold liquid and a source of hot liquid are in fluid communication with flow passages in each zone. A valve arrangement is operable to independently control temperature of the liquid by adjusting a mixing ratio of the hot liquid to the cold liquid circulating in the flow passages. In another embodiment, heating elements along a supply line and transfer lines heat a liquid from a liquid source before circulating in the flow passages.
Abstract:
A method of protecting a bond layer in a substrate support adapted for use in a plasma processing system. The method includes the steps of attaching an upper member of a substrate support to a lower member of a substrate support with a bonding material. An adhesive is applied to an outer periphery of the upper member and to an upper periphery of the lower member, and a protective ring is positioned around the outer periphery of the upper member and the upper periphery of the lower member. The protective ring is originally fabricated with dimensions that provide mechanical stability and workability. The protective ring is then machined to an exact set of final dimensions consistent with the design of the substrate support application.
Abstract:
A heating plate for a substrate support assembly in a semiconductor plasma processing apparatus, comprises multiple independently controllable planar heater zones arranged in a scalable multiplexing layout, and electronics to independently control and power the planar heater zones. A substrate support assembly in which the heating plate is incorporated includes an electrostatic clamping electrode and a temperature controlled base plate. Methods for manufacturing the heating plate include bonding together ceramic or polymer sheets having planar heater zones, power supply lines, power return lines and vias.
Abstract:
Abstract A plasma etching system having a substrate support assembly with multiple independently controllable heater zones. The plasma etching system is configured to control etching temperature of predetermined locations so that pre-etch and/or post-etch non-uniformity of critical device parameters can be compensated for.