Abstract:
A method for optimizing a dechuck sequence, which includes removing a substrate from a lower electrode. The method includes performing an initial analysis to determine if a first set of electrical characteristic data of a plasma formed during the dechuck sequence traverses a threshold values. If so, turning off the inert gas. The method also includes raising the lifter pins slightly from the lower electrode to move the substrate in an upward direction. The method further includes performing a mechanical and electrical analysis, which includes comparing a first set of mechanical data, which includes an amount of force exerted by the lifter pins, against a threshold value. The mechanical and electrical analysis also includes comparing a second set of electrical characteristic data against a threshold value. If both traverse the respective threshold value, removes the substrate from the lower electrode since a substrate-released event has occurred.
Abstract:
A device for use with an RF generating source, a first electrode, a second electrode and an element. The RF generating source is operable to provide an RF signal to the first electrode and thereby create a potential between the first electrode and the second electrode. The device comprises a connecting portion and a current sink. The connecting portion is operable to electrically connect to one of the first electrode, the second electrode and an element. The current sink is in electrical connection with the connection portion and a path to ground. The current sink comprises a voltage threshold. The current sink is operable to conduct current from the connecting portion to ground when a voltage on the electrically connected one of the first electrode, the second electrode and the element is greater than the voltage threshold.
Abstract:
A device for use with an RF generating source, a first electrode, a second electrode and an element. The RF generating source is operable to provide an RF signal to the first electrode and thereby create a potential between the first electrode and the second electrode. The device comprises a connecting portion and a current sink. The connecting portion is operable to electrically connect to one of the first electrode, the second electrode and an element. The current sink is in electrical connection with the connection portion and a path to ground. The current sink comprises a voltage threshold. The current sink is operable to conduct current from the connecting portion to ground when a voltage on the electrically connected one of the first electrode, the second electrode and the element is greater than the voltage threshold.
Abstract:
A method for optimizing a dechuck sequence, which includes removing a substrate from a lower electrode. The method includes performing an initial analysis to determine if a first set of electrical characteristic data of a plasma formed during the dechuck sequence traverses a threshold values. If so, turning off the inert gas. The method also includes raising the lifter pins slightly from the lower electrode to move the substrate in an upward direction. The method further includes performing a mechanical and electrical analysis, which includes comparing a first set of mechanical data, which includes an amount of force exerted by the lifter pins, against a threshold value. The mechanical and electrical analysis also includes comparing a second set of electrical characteristic data against a threshold value. If both traverse the respective threshold value, removes the substrate from the lower electrode since a substrate-released event has occurred.
Abstract:
A method for optimizing a dechuck sequence, which includes removing a substrate from a lower electrode. The method includes performing an initial analysis to determine if a first set of electrical characteristic data of a plasma formed during the dechuck sequence traverses a threshold values. If so, turning off the inert gas. The method also includes raising the lifter pins slightly from the lower electrode to move the substrate in an upward direction. The method further includes performing a mechanical and electrical analysis, which includes comparing a first set of mechanical data, which includes an amount of force exerted by the lifter pins, against a threshold value. The mechanical and electrical analysis also includes comparing a second set of electrical characteristic data against a threshold value. If both traverse the respective threshold value, removes the substrate from the lower electrode since a substrate-released event has occurred.