Abstract:
A method for optimizing a dechuck sequence, which includes removing a substrate from a lower electrode. The method includes performing an initial analysis to determine if a first set of electrical characteristic data of a plasma formed during the dechuck sequence traverses a threshold values. If so, turning off the inert gas. The method also includes raising the lifter pins slightly from the lower electrode to move the substrate in an upward direction. The method further includes performing a mechanical and electrical analysis, which includes comparing a first set of mechanical data, which includes an amount of force exerted by the lifter pins, against a threshold value. The mechanical and electrical analysis also includes comparing a second set of electrical characteristic data against a threshold value. If both traverse the respective threshold value, removes the substrate from the lower electrode since a substrate-released event has occurred.
Abstract:
The present invention provides a reliable, non-invasive, electrical test method for predicting satisfactory performance of electrostatic chucks (ESCs). In accordance with an aspect of the present invention, a parameter, e.g., impedance, of an ESC is measured over a frequency band to generate a parameter functions. This parameter function may be used to establish predetermined acceptable limits of the parameter within the frequency band.
Abstract:
A recirculation system of a substrate support on which a semiconductor substrate is subjected to a multistep process in a vacuum chamber, the system comprising a substrate support having at least one liquid flow passage in a base plate thereof, an inlet and an outlet in fluid communication with the flow passage, a supply line in fluid communication with the inlet, and a return line in fluid communication with the outlet; a first recirculator providing liquid at temperature T 1 in fluid communication with the supply line and the return line; a second recirculator providing liquid at temperature T 2 in fluid communication with the supply line and the return line, temperature T 2 being at least 10°C above temperature T 1 ; a pre-cooling unit providing liquid at temperature T pc connected to the inlet and the outlet, temperature T pc being at least 10C below T 1 ; a pre-heating unit providing liquid at temperature T ph connected to the inlet and the outlet, temperature T ph being at least 10°C above T 2 ; a controller operable to selectively operate valves of the recirculation system to recirculate liquid between the flow passage and the first recirculator, the second recirculator, the pre-cooling unit or the pre-heating unit.
Abstract:
An electrostatic chuck assembly is provided comprising a ceramic contact layer, a patterned bonding layer, an electrically conductive base plate, and a subterranean arc mitigation layer. The ceramic contact layer and the electrically conductive base plate cooperate to define a plurality of hybrid gas distribution channels formed in a subterranean portion of the electrostatic chuck assembly. Individual ones of the hybrid gas distribution channels comprise surfaces of relatively high electrical conductivity presented by the electrically conductive base plate and relatively low electrical conductivity presented by the ceramic contact layer. The subterranean arc mitigation layer comprises a layer of relatively low electrical conductivity and is formed over the relatively high conductivity surfaces of the hybrid gas distribution channels in the subterranean portion of the electrostatic chuck assembly. Semiconductor wafer processing chambers are also provided.
Abstract:
Showerhead electrode assemblies are disclosed, which include a showerhead electrode adapted to be mounted in an interior of a vacuum chamber; an optional backing plate attached to the showerhead electrode; a thermal control plate attached to the backing plate or to the showerhead electrode at multiple contact points across the backing plate; and at least one thermally and electrically conductive gasket separating the backing plate and the thermal control plate, or the backing plate and showerhead electrode, at the contact points. Methods of processing semiconductor substrates using the showerhead electrode assemblies are also disclosed.
Abstract:
A method for optimizing a dechuck sequence, which includes removing a substrate from a lower electrode. The method includes performing an initial analysis to determine if a first set of electrical characteristic data of a plasma formed during the dechuck sequence traverses a threshold values. If so, turning off the inert gas. The method also includes raising the lifter pins slightly from the lower electrode to move the substrate in an upward direction. The method further includes performing a mechanical and electrical analysis, which includes comparing a first set of mechanical data, which includes an amount of force exerted by the lifter pins, against a threshold value. The mechanical and electrical analysis also includes comparing a second set of electrical characteristic data against a threshold value. If both traverse the respective threshold value, removes the substrate from the lower electrode since a substrate-released event has occurred.
Abstract:
An electrostatic chuck assembly is provided comprising a ceramic contact layer, a patterned bonding layer, an electrically conductive base plate, and a subterranean arc mitigation layer. The ceramic contact layer and the electrically conductive base plate cooperate to define a plurality of hybrid gas distribution channels formed in a subterranean portion of the electrostatic chuck assembly. Individual ones of the hybrid gas distribution channels comprise surfaces of relatively high electrical conductivity presented by the electrically conductive base plate and relatively low electrical conductivity presented by the ceramic contact layer. The subterranean arc mitigation layer comprises a layer of relatively low electrical conductivity and is formed over the relatively high conductivity surfaces of the hybrid gas distribution channels in the subterranean portion of the electrostatic chuck assembly. Semiconductor wafer processing chambers are also provided.
Abstract:
Showerhead electrode assemblies are disclosed, which include a showerhead electrode adapted to be mounted in an interior of a vacuum chamber; an optional backing plate attached to the showerhead electrode; a thermal control plate attached to the backing plate or to the showerhead electrode at multiple contact points across the backing plate; and at least one thermally and electrically conductive gasket separating the backing plate and the thermal control plate, or the backing plate and showerhead electrode, at the contact points. Methods of processing semiconductor substrates using the showerhead electrode assemblies are also disclosed.Figure 3