Abstract:
A method of component management in a substrate processing system is disclosed. The substrate processing system has a set of components, at least a plurality of components of the set of components being designated to be smart components, each component of the plurality of components having an intelligent component enhancement (ICE). The method includes querying the plurality of components to request their respective unique identification data from their respective ICEs. The method further includes receiving unique identification data from the plurality of components if any of the plurality of components responds to the querying. The method additionally includes flagging the first component for corrective action if a first component of the plurality of components fails to provide first component unique identification data when the first component identification data is expected.
Abstract:
A method of component management in a substrate processing system is disclosed. The substrate processing system has a set of components, at least a plurality of components of the set of components being designated to be smart components, each component of the plurality of components having an intelligent component enhancement (ICE). The method includes querying the plurality of components to request their respective unique identification data from their respective ICEs. The method further includes receiving unique identification data from the plurality of components if any of the plurality of components responds to the querying. The method additionally includes flagging the first component for corrective action if a first component of the plurality of components fails to provide first component unique identification data when the first component identification data is expected.
Abstract:
A method of tuning the thermal conductivity of an electrostatic chuck (ESC) support assembly comprises measuring the temperature at a plurality of sites on a support assembly surface in which each site is associated with a given cell, determining from the measurements any fractional reduction in area suggested for each cell, and removing material from the support assembly surface within each cell in accordance with the suggested fractional reduction in order to decrease thermal conductivity in that cell. The material removal can result in an improvement to the equilibrium temperature uniformity of the electrostatic chuck support assembly at the chuck surface of an electrostatic chuck bonded to the support assembly surface, or can result in an equilibrium temperature profile of the ESC support assembly which approaches or achieves a target equilibrium temperature profile. Thermal conductivity tuning can thus take place by a method comprising defining a cell structure, determining the target areal density of each cell and removing a fractional area of material to achieve the target areal density for that cell. Material removal can be effected by drilling, routing, laser machining or grit blast machining on an X-Y table.
Abstract:
A chuck for a plasma processor comprises a temperature-controlled base (302), a thermal insulator (304), a flat support (306), and a heater (308). The temperature-controlled base (302) has a temperature below the desired temperature of a workpiece (310). The thermal insulator (304) is disposed over the temperature-controlled base (302). The flat support (306) holds a workpiece (310) and is disposed over the thermal insulator (304). A heater (308) is embedded within the flat support and/or disposed on an underside of the flat support. The heater includes a plurality of heating elements that heat a plurality of corresponding heating zones. The power supplied and/or temperature of each heating element is controlled independently.
Abstract:
A method of modifying the heat transfer coefficient profile of an electrostatic chuck by configuring the areal density of a mesa configuration of an insulating layer of the chuck is provided. A method of modifying the capacitance profile of an electrostatic chuck by adjustment or initial fabrication of the height of a mesa configuration of an insulating layer of the chuck is further provided. The heat transfer coefficient at a given site can be measured by use of a heat flux probe, whereas the capacitance at a given site can be measured by use of a capacitance probe. The probes are placed on the insulating surface of the chuck and may include a plurality of mesas in a single measurement. A plurality of measurements made across the chuck provide a heat transfer coefficient profile or a capacitance profile, from which a target mesa areal density and a target mesa height are determined. The target density and height are achieved mechanically; the target density by mechanically adjusting the areal density of existing mesas; and the target height by creating or deepening low areas surrounding planned or existing mesas, respectively. This can be accomplished using any of known techniques for controlled material removal such as laser machining or grit blast machining on an X-Y table.
Abstract:
A method of tuning the thermal conductivity of an electrostatic chuck (ESC) support assembly comprises measuring the temperature at a plurality of sites on a support assembly surface in which each site is associated with a given cell, determining from the measurements any fractional reduction in area suggested for each cell, and removing material from the support assembly surface within each cell in accordance with the suggested fractional reduction in order to decrease thermal conductivity in that cell. The material removal can result in an improvement to the equilibrium temperature uniformity of the electrostatic chuck support assembly at the chuck surface of an electrostatic chuck bonded to the support assembly surface, or can result in an equilibrium temperature profile of the ESC support assembly which approaches or achieves a target equilibrium temperature profile. Thermal conductivity tuning can thus take place by a method comprising defining a cell structure, determining the target areal density of each cell and removing a fractional area of material to achieve the target areal density for that cell. Material removal can be effected by drilling, routing, laser machining or grit blast machining on an X-Y table.
Abstract:
An optical alignment system for use in a semiconductor processing system is provided. The optical alignment system includes a wafer chuck that has an alignment feature integrated into the top surface of the wafer chuck. In addition, a beam-forming system, which is capable of emitting an optical signal onto the alignment feature, is disposed above the wafer chuck. Also, a detector in included that can detect an amplitude of the optical signal emitted onto the alignment feature. In one aspect, the alignment feature can be a reflective alignment feature that reflects a portion of the optical signal back to the beam detector. In additional aspect, the alignment feature can be a transmittance alignment feature capable of allowing a portion of the optical signal to pass through the wafer chuck to the detector. In this aspect, the detector can be disposed below the wafer chuck.
Abstract:
PROBLEM TO BE SOLVED: To provide a method and an apparatus for controlling the temperature of a semiconductor wafer during reactive ion etching without needing large plasma heat flux. SOLUTION: A chuck for a plasma processing machine comprises a temperature-controlled base (302), a thermal insulator (304), a flat support (306), and a heater (308). The temperature-controlled base has a temperature below a desired temperature of a workpiece (310). The thermal insulator is disposed over the temperature-controlled base. The flat support is disposed on the thermal insulator. The flat support holds a workpiece. The heater is embedded within the flat support and/or disposed on an undersurface of the flat support. The heater includes a plurality of heating elements that heat a plurality of corresponding heating zones. The power supplied to each heating element and/or temperature of each heating element is controlled independently. COPYRIGHT: (C)2009,JPO&INPIT
Abstract:
A wafer etching system has a measuring device, an etching chamber, and a controller. The measuring device measures the critical dimension test feature (CD) along the profile of the wafer at a number of preset locations. The etching chamber receives the wafer from the measuring device. The etching chamber includes a chuck supporting the wafer and a number of heating elements disposed within the chuck. Each heating element is positioned adjacent to one of the preset locations on the wafer. The controller is coupled to the measuring device to receive the actual measured CD's for a particular wafer. The controller is also coupled to control the heating elements. The controller adjusts the temperature of the heating elements during a process to reduce so as the variation of critical dimensions measured at the preset locations.