Abstract:
A component delivery mechanism for distributing a component inside a process chamber is disclosed. The component is used to process a work piece within the process chamber. The component delivery mechanism includes a plurality of component outputs for outputting the component to a desired region of the process chamber. The component delivery mechanism further includes a spatial distribution switch coupled to the plurality of component outputs. The spatial distribution switch is arranged for directing the component to at least one of the plurality of component outputs. The component delivery mechanism also includes a single component source coupled to the spatial distribution switch. The single component source is arranged for supplying the component to the spatial distribution switch.
Abstract:
PROBLEM TO BE SOLVED: To provide a method for predicting a processing surface profile predicting a process surface profile that a given plasma process will create on a process substrate. SOLUTION: In this method, test values of input variables are selected (200), plasma is modeled (210), results of a test process of the substrate surface profile are substantially predicted by using the result in 210 and substrate parameters given in 200 (220), initial values of the surface profile model related to the input variables and unknown coefficients are obtained (230), instructions for difference between the test surface profile and the substantial profile predicted value are generated, and optimum values of unknown coefficients for minimizing the instructions for difference are generated. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
Disclosed are methods of generating a proximity-corrected design layout for photoresist to be used in an etch operation. The methods may include identifying a feature in an initial design layout, and estimating one or more quantities characteristic of an in-feature plasma flux (IFPF) within the feature during the etch operation. The methods may further include estimating a quantity characteristic of an edge placement error (EPE) of the feature by comparing the one or more quantities characteristic of the IFPF to those in a look-up table (LUT, and/or through application of a multivariate model trained on the LUT, e.g., constructed through machine learning methods (MLM)) which associates values of the quantity characteristic of EPE with values of the one or more quantities characteristics of the IFPF. Thereafter, the initial design layout may be modified based on at the determined quantity characteristic of EPE.
Abstract:
A method and apparatus for calibrating a semi-empirical process simulator used to determine process values in a plasma process for creating a desired surface profile on a process substrate includes providing a test model which captures all mechanisms responsible for profile evolution in terms of a set of unknown surface parameters. A set Sets of test conditions processes is are derived for which the profile evolution is governed by only a limited number of parameters. For each set of test conditions process, model test values are selected and a test substrate is substrates are actually subjected to a the test process processes defined by the test values, thereby creating a test surface profile profiles. The test values are used to generate an approximate profile prediction predictions and are adjusted to minimize the discrepancy between the test surface profile profiles and the approximate profile prediction predictions, thereby providing a final model of the profile evolution in terms of the process values.
Abstract:
A component delivery mechanism for distributing a component inside a process chamber is disclosed. The component is used to process a work piece within the process chamber. The component delivery mechanism includes a plurality of component outputs for outputting the component to a desired region of the process chamber. The component delivery mechanism further includes a spatial distribution switch coupled to the plurality of component outputs. The spatial distribution switch is arranged for directing the component to at least one of the plurality of component outputs. The component delivery mechanism also includes a single component source coupled to the spatial distribution switch. The single component source is arranged for supplying the component to the spatial distribution switch.