Abstract:
A method of sequencing a nucleic acid strand includes receiving particles having nucleic acid strands coupled to a polymer matrix, exposing the particles to a solution including a condensing agent, and applying the particles to a surface, the particles depositing on the surface.
Abstract:
The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragment thereof are provided that allow for nucleic acid amplification. In one aspect, the disclosure relates to modified polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In some aspects, the disclosure relates to modified polymerases useful for the generation of nucleic acid libraries or nucleic acid templates for use in various downstream processes. In some aspects, the disclosure relates to the identification of homologous amino acid mutations that can be transferred across classes or families of polymerases to provide novel polymerases with altered catalytic properties. In some aspects, the disclosure provides modified polymerases having enhanced catalytic properties as compared to a reference polymerase.
Abstract:
The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, recombinant polymerases and biologically active fragments thereof are provided that allow for nucleic acid amplification. In some aspects, the disclosure provides recombinant polymerases that yield lower systematic error rates and/or improved accuracy, when used in sequencing by synthesis reactions as compared to a control polymerase. In one aspect, the disclosure relates to recombinant polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In another aspect, the recombinant polymerases are useful for the amplification of nucleic acid templates during PCR, emPCR, isothermal amplification, recombinase polymerase amplification, rolling circle amplification, strand displacement amplification and proximity ligation amplification. In some aspects, the disclosure relates to recombinant polymerases useful for the generation of nucleic acid libraries and/or nucleic acid templates.
Abstract:
In some embodiments, the disclosure relates generally to methods as well as related compositions, systems, kits and apparatus comprising linking proteins to target compounds and/or to locations of interest using tethers. For example, the tether can be used to link the protein to a target compound, for example, to link an enzyme to a substrate. Similarly, the tether can be used to link the protein at or near a desired location on a surface. In one group of embodiments, the tether includes a polynucleotide and the target compound or location on the surface includes another polynucleotide that is capable of hybridizing to the tether. In such embodiments, the tether can be used to link the protein to the target compound or location using nucleic acid hybridization.
Abstract:
The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, recombinant polymerases and biologically active fragments thereof are provided that allow for nucleic acid amplification. In some aspects, the disclosure provides recombinant polymerases that yield lower systematic error rates and/or improved accuracy, when used in sequencing by synthesis reactions as compared to a control polymerase. In one aspect, the disclosure relates to recombinant polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In another aspect, the recombinant polymerases are useful for the amplification of nucleic acid templates during PCR, emPCR, isothermal amplification, recombinase polymerase amplification, rolling circle amplification, strand displacement amplification and proximity ligation amplification. In some aspects, the disclosure relates to recombinant polymerases useful for the generation of nucleic acid libraries and/or nucleic acid templates.
Abstract:
The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragment thereof are provided that allow for nucleic acid amplification. In one aspect, the disclosure relates to modified polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In some aspects, the disclosure relates to modified polymerases useful for the generation of nucleic acid libraries or nucleic acid templates for use in various downstream processes. In some aspects, the disclosure relates to the identification of homologous amino acid mutations that can be transferred across classes or families of polymerases to provide novel polymerases with altered catalytic properties. In some aspects, the disclosure provides modified polymerases having enhanced catalytic properties as compared to a reference polymerase.
Abstract:
The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, recombinant polymerases and biologically active fragments thereof are provided that allow for nucleic acid amplification. In some aspects, the disclosure provides recombinant polymerases that yield lower systematic error rates and/or improved accuracy, when used in sequencing by synthesis reactions as compared to a control polymerase. In one aspect, the disclosure relates to recombinant polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In another aspect, the recombinant polymerases are useful for the amplification of nucleic acid templates during PCR, emPCR, isothermal amplification, recombinase polymerase amplification, rolling circle amplification, strand displacement amplification and proximity ligation amplification. In some aspects, the disclosure relates to recombinant polymerases useful for the generation of nucleic acid libraries and/or nucleic acid templates.
Abstract:
Provided are methods for preparing a library of target nucleic acid sequences, as well as compositions and uses therefor. Methods comprise contacting a nucleic acid sample with a plurality of adaptors capable of amplification of one or more target nucleic acid sequences under conditions wherein the target nucleic acid(s) undergo a first amplification; digesting the resulting first amplification products; repairing the digested target amplicons; and amplifying the repaired products in a second amplification, thereby producing a library of target nucleic acid sequence. Each of the plurality of adaptor compositions comprise a handle and a targeted nucleic acid sequence and optionally one or more tag sequences. Provided methods may be carried out in a single, addition only workflow reaction, allowing for rapid production of highly multiplexed targeted libraries, optionally including unique tag sequences. Resulting library compositions are useful for a variety of applications, including sequencing applications.
Abstract:
Provided are methods for preparing a library of target nucleic acid sequences, as well as compositions and uses therefor. Methods comprise contacting a nucleic acid sample with a plurality of adaptors capable of amplification of one or more target nucleic acid sequences under conditions wherein the target nucleic acid(s) undergo a first amplification; digesting the resulting first amplification products; repairing the digested target amplicons; and amplifying the repaired products in a second amplification, thereby producing a library of target nucleic acid sequence. Each of the plurality of adaptor compositions comprise a handle and a targeted nucleic acid sequence and optionally one or more tag sequences. Provided methods may be carried out in a single, addition only workflow reaction, allowing for rapid production of highly multiplexed targeted libraries, optionally including unique tag sequences. Resulting library compositions are useful for a variety of applications, including sequencing applications.