Abstract:
A method for determining false positives calls in a biological data plot is provided. The method includes identifying a first data cluster as non-amplification data points within the biological data plot and identifying a second data cluster as wild-type positives within the biological data plot. The method further includes estimating a position in the biological data plot of a center of the first and second data clusters. The method further includes determining, for each data point within the first data cluster, a probability of belonging to the first data cluster and determining, for each data point within the second data cluster, a probability of belonging to the second data cluster. The method includes applying a probability threshold for each data point within the first and second data cluster to identify false positives.
Abstract:
A method for improving image quality is provided. The method includes receiving image data of a substrate, wherein the image data is generated by imaging the substrate, and an image is generated from the image data. The method further includes generating a background representation from a background noise portion of the image, wherein the background portion includes signal information undesired for further processing and generating a background subtracted image by subtracting the background representation from the image. In this way, a separate background image is not needed to subtract the background from the image including the regions-of-interest to improve image quality.
Abstract:
In one exemplary embodiment, a method for calibrating an instrument is provided. The instrument includes an optical system capable of imaging florescence emission from a plurality of reaction sites. The method includes performing a region-of-interest (ROI) calibration to determine reaction site positions in an image. The method further includes performing a pure dye calibration to determine the contribution of a fluorescent dye used in each reaction site by comparing a raw spectrum of the fluorescent dye to a pure spectrum calibration data of the fluorescent dye. The method further includes performing an instrument normalization calibration to determine a filter normalization factor. The method includes performing an RNase P validation to validate the instrument is capable of distinguishing between two different quantities of sample.
Abstract:
A biological analysis system is provided. The system comprises a sample block assembly. The sample block assembly comprises a sample block configured to accommodate a sample holder, the sample holder configured to receive a plurality of samples. The system also comprises a control system configured to cycle the plurality of samples through a series of temperatures. The system further comprises an automated tray comprising a slide assembly, the tray configured to reversibly slide the sample block assembly from a closed to an open position to allow user access to the plurality of sample holders.
Abstract:
According to one exemplary embodiment, a method for providing a amplification quality metric to a user is provided. The method includes receiving amplification data from an amplification of a sample to generate an amplification curve. The amplification curve includes an exponential region and a transition region. The method further includes determining a first value of the transition region and determining a second value of the transition region. The first value is the beginning of the transition region and the second value is the end of the transition region. Next, the amplification quality metric is calculated based on at least the first value and the second value. Then, the amplification quality metric is displayed to the user.
Abstract:
A method for calibrating a biological instrument is provided. The method comprises the steps of acquiring an image of at least one biological sample array, determining a first region of interest within the image, wherein the first region of interest comprises a first plurality of locations on the at least one biological array; and identifying within the first region of interest, a plurality of image elements associated with each of the first plurality of locations on the at least one biological array.
Abstract:
A method for validating an instrument is provided. The method includes receiving amplification data from a validation plate to generate a plurality of amplification curves (102, 202). The validation plate includes a sample of a first quantity and a second quantity, and each amplification curve includes an exponential region. The method further includes determining a set of fluorescence thresholds based on the exponential regions of the plurality of amplification curves (104, 204) and determining, for each fluorescence threshold of the set, a first set of cycle threshold (C t ) values of amplification curves generated from the samples of the first quantity and a second set of C t values of amplification curves generated from the samples of the second quantity (106, 206). The method includes calculating if the first and second quantities are sufficiently distinguishable based on C t values at each of the plurality of fluorescence thresholds (108, 208-218).
Abstract:
A system for analyzing biological data, comprising: a storage configured to store a plurality of data files containing biological data obtained from a plurality of devices; a server configured to: host a plurality of applications, each configured to be implemented on the server and to provide analysis, manipulation, comparison, visualization, or a combination thereof, of the biological data included in the data files, wherein the plurality of applications allow a user to analyze different data files related to the same sample and compare the results of the analysis.
Abstract:
A computer-implemented method for designing a digital PCR (dPCR) experiment is provided. The method includes receiving, from a user, a selection of optimization type. The optimization type may be maximizing the dynamic range, minimizing the number of substrates including reaction sites needed for the experiment, determining a dilution factor, or determining the lower limit of detection, for example. The method further includes receiving, from the user, a precision measure for an experiment, and a minimum concentration of a target in a reaction site for the experiment. The method also includes determining a set of dPCR experiment design factors for the experiment based on the optimization type. The set of dPCR experiment design factors is then displayed to the user.