Abstract:
The process time required for fluorine doping of porous silica bodies to produce fluorine doped preforms for the manufacture of depressed index optical fibers is reduced by separating the doping step into a predeposit step, where "excess" fluorine is deposited on the silica particles within the porous silica body, and a drive-in step where atomic fluorine is distributed into the silica particles. The drive-in step is conveniently combined with the sintering or consolidation step to further enhance the efficiency of the doping process and is carried out at a temperature above 1300°C in an atmosphere devoid of fluorine.
Abstract:
The invention is a sol-gel extrusion process which allows fabrication of both thick and thin wall tubes. For example, the process is capable of preparing silica overcladding tubes in a manner easier than sol-gel casting processes, and also capable of preparing relatively thin substrate tubes, which are difficult to cast. According to the invention, a silica dispersion containing a stabilizing agent is provided, a gelling agent is added to the dispersion to induce gellation, and the resultant gel is extruded into a silica body, in the substantial absence, i.e. less than 0.5%wt., of polymeric material from the gel. Substantially avoiding the inclusion of such polymeric material in overcladding and substrate tubes offers significant commercial advantages by reducing the time and energy required to remove organic materials from the tube bodies, by reducing environmental impact and by reducing the amount of impurities introduced in the tubes.
Abstract:
The process time required for fluorine doping of porous silica bodies to produce fluorine doped preforms for the manufacture of depressed index optical fibers is reduced by separating the doping step into a predeposit step, where "excess" fluorine is deposited on the silica particles within the porous silica body, and a drive-in step where atomic fluorine is distributed into the silica particles. The drive-in step is conveniently combined with the sintering or consolidation step to further enhance the efficiency of the doping process and is carried out at a temperature above 1300°C in an atmosphere devoid of fluorine.
Abstract:
The disclosed method of making microstructured optical fiber comprises providing a mold, with a multiplicity of elongate elements extending into the mold and being maintained in a predetermined spatial arrangement with respect to the mold. Silica-containing sol is introduced into the mold and is caused to or permitted to gel, such that a gel body results. After removing the elongate elements from the gel body and removing the gel body from the mold, the gel body is dried, sintered and purified, and the microstructured fiber is drawn from the sintered body.