Abstract:
Un procedimiento de determinación de la corriente de iones en una cámara de ionización, comprendiendo dicho procedimiento las etapas de: conexión de un primer y segundo electrodos (104, 106) de una cámara (102) de ionización a un voltaje con una primera polaridad; determinación de una primera corriente entre el primer y el segundo electrodos (104, 106) de la cámara (102) de ionización provocada por el voltaje con la primera polaridad; conexión del primer y el segundo electrodos (104, 106) de la cámara de ionización al voltaje con una segunda polaridad; determinación de una segunda corriente entre el primer y el segundo electrodos (104, 106) de la cámara (102) de ionización provocada por el voltaje con la segunda polaridad; y determinación de una diferencia entre la primera y segunda corrientes, en el que la diferencia es la corriente de iones a través de la cámara de ionización.
Abstract:
An analog-to-digital (ADC) controller is used in combination with a digital processor of a microcontroller to control the operation of capacitance measurements using the capacitive voltage division (CVD) method. The ADC controller handles the CVD measurement process instead of the digital processor having to run additional program steps for controlling charging and discharging of a capacitive touch sensor and sample and hold capacitor, then coupling these two capacitors together, and measuring the resulting voltage charge thereon in determining the capacitance thereof. The ADC controller may be programmable and its programmable parameters stored in registers.
Abstract:
An ion chamber provides a current representative of its characteristics as affected by external conditions, e.g., clean air or smoke. A direct current (DC) voltage is applied to the ion chamber at a first polarity and the resulting current through the ion chamber and parasitic leakage current is measured at the first polarity, then the DC voltage is applied to the ion chamber at a second polarity opposite the first polarity, and the resulting current through the ion chamber and parasitic leakage current is measured at the second polarity. Since substantially no current flows through the ion chamber at the second polarity, the common mode parasitic leakage current contribution may be removed from the total current measurement by subtracting the current measured at the second polarity from the current measured at the first polarity, resulting in just the current through the ion chamber.
Abstract:
A capacitor having air dielectric between its plates may be used to detect the presence of smoke and other contaminants in the dielectric air passing over the plates of the capacitor. Smoke from typical fires is mainly composed of unburned carbon that has diffused in the surrounding air and rises with the heat of the fire. The permittivity of the carbon particles is about 10 to 15 times the permittivity of clean air. The addition of the carbon particles into the air creates a change in the permittivity thereof that is large enough to measure by measuring a change in capacitance of the capacitor having the air dielectric through which the air laden carbon particles pass through.
Abstract:
Activation of an external sensor coupled to an electronic device will change the frequency of a low power oscillator in the electronic device that runs during a low power sleep mode of the electronic device. When a change in frequency of the low power oscillator is detected, the electronic device will wake-up from the low power sleep mode. In addition, when a change in frequency from an external frequency source is detected, the electronic device will wake-up from the low power sleep mode.
Abstract:
An intelligent power control peripheral (IPCP) may facilitate communications among individual peripherals independent from a digital processor. The IPCP is a "Meta-Peripheral" that may incorporate a configurable inter-peripheral module communications network with digital pulse width modulation (PWM) generators and timing logic therefore, at least one ADC, analog comparators and at least one DAC that may be configured to provide an automatic power control structure that may also provide automatic digital processor/DSP task and workload scheduling for applications such as switch mode power supply (SMPS), brushed motor, etc. This Meta-Peripheral may further use a configurable control fabric in combination with the aforementioned specialized peripherals for the utmost in control configuration flexibility.