Abstract:
Electronic and optical (or photonic) devices with variable or switchable properties and methods used to form these devices, are disclosed. More specifically, the present invention involves forming layers of conductive material and dielectric material or materials with varying conductivity and indexes of refraction to form various electronic and optical devices. One such layer of adjustable material is formed by depositing epitaxial or reduced grain boundary barium strontium titanate on the C-plane of sapphire.
Abstract:
The present invention involves forming layers of conductive material (12, 16; 17, 18) and dielectric material (14) or material with varying conductivity and indexes of refraction to form various electronic and optical devices.
Abstract:
The electrical conductivity of a zinc oxide layer (15) is improved by annealing (15) the layer at a temperature of between about 500°C and about 600°C in an inert atmosphere having sufficient levels of entrained ZnO to permit reduction of oxygen levels in the lattice structure of the zinc oxide layer (15) while maintaining zinc levels in the lattice structure.
Abstract:
Methods for producing coatings on a glass substrate using combined chemical vapor deposition or other heat concentrated deposition (CHD) techniques. The term "glass" in this context is defined as those materials that crack, break or are otherwise damaged prior to plastic deformation of the material. In combustion chemical vapor deposition CCVD, a reagent and a carrier solution are mixed together to form a reagent mixture. The reagent mixture is then ignited to create a flame (14, 16), or alternatively, the reagent mixture may be fed to a plasma torch or other heat source. The combustion source may vaporize at least part of the reagent, the vapor phase of the reagent contacting the surface of the substrate (A) to be coated. In this manner, a film or coating is formed on the glass substrate (A). In some of the disclosed methods, the glass substrate (A) may be preheated, to avoid differential heating of the glass by the combustion source. Various methods of reducing the differential heating are disclosed. This differential heating may cause thermal shock or breakage of the glass substrate (A).