Abstract:
Improved silicon/germanium nanoparticle inks are described that have silicon/ germanium nanoparticles well distributed within a stable dispersion. In particular the inks are formulated with a centrifugation step to remove contaminants as well as less well dispersed portions of the dispersion. A sonication step can be used after the centrifugation, which is observed to result in a synergistic improvement to the quality of some of the inks. The silicon/germanium ink properties can be engineered for particular deposition applications, such as spin coating or screen printing. Appropriate processing methods are described to provide flexibility for ink designs without surface modifying the silicon/germanium nanoparticles. The silicon/germanium nanoparticles are well suited for forming semiconductor components, such as components for thin film transistors or solar cell contacts.
Abstract:
Silicon based nanoparticle inks are formulated with viscous polycyclic alcohols to control the rheology of the inks. The inks can be formulated into pastes with non-Newtonian rheology and good screen printing properties. The inks can have low metal contamination such that they are suitable for forming semiconductor structures. The silicon based nanoparticles can be elemental silicon particles with or without dopant.
Abstract:
Silicon based nanoparticle inks are described with very low metal contamination levels. In particular, metal contamination levels can be established in the parts-per-billion range. The inks of particular interest generally comprise a polymer to influence the ink rheology. Techniques are described that are suitable for purifying polymers soluble in polar solvents, such as alcohols, with respect metal contamination. Very low levels of metal contamination for cellulose polymers are described.
Abstract:
Improved silicon/germanium nanoparticle inks are described that have silicon/ germanium nanoparticles well distributed within a stable dispersion. In particular the inks are formulated with a centrifugation step to remove contaminants as well as less well dispersed portions of the dispersion. A sonication step can be used after the centrifugation, which is observed to result in a synergistic improvement to the quality of some of the inks. The silicon/germanium ink properties can be engineered for particular deposition applications, such as spin coating or screen printing. Appropriate processing methods are described to provide flexibility for ink designs without surface modifying the silicon/germanium nanoparticles. The silicon/germanium nanoparticles are well suited for forming semiconductor components, such as components for thin film transistors or solar cell contacts.