Abstract:
An ion implantation system for improving performance and extending lifetime of an ion source is disclosed whereby the selection, delivery, optimization and control of the flow rate of a co-gas into an ion source chamber is automatically controlled.
Abstract:
A method is provided for reducing particle contamination in an ion implantation system, wherein an ion implantation system having source, mass analyzer, resolving aperture, decel suppression plate, and end station is provided. An ion beam is formed via the ion source, and a workpiece is transferred between an external environment and the end station for ion implantation thereto. A decel suppression voltage applied to the decel suppression plate is modulated concurrent with the workpiece transfer, therein causing the ion beam to expand and contract, wherein one or more surfaces of the resolving aperture and/or one or more components downstream of the resolving aperture are impacted by the ion beam, therein mitigating subsequent contamination of workpieces from previously deposited material residing on the one or more surfaces. The contamination can be mitigated by removing the previously deposited material or strongly adhering the previously deposited material to the one or more surfaces.
Abstract:
An exemplary ion source for creating a stream of ions has a chamber body that at least partially bounds an ionization region of the arc chamber. The arc chamber body is used with a hot filament arc chamber housing that either directly or indirectly heats a cathode to sufficient temperature to cause electrons to stream through the ionization region of the arc chamber. Electrically insulating seal element(s) engaging an outer surface of the arc chamber body are provided for impeding material from exiting the chamber interior openings of the arc chamber body. The seal element(s) have a ceramic body that includes an outer wall that abuts the arc chamber body along a circumferential outer lip. The seal also has one or more radially inner channels bounded by one or more inner walls spaced inwardly from the outer wall. The electrically insulating seal element comprises a Boron Nitride (BN) material.
Abstract:
An apparatus is provided for reducing particle contamination in an ion implantation system. The apparatus has an enclosure having an entrance, an exit, and at least one louvered side having a plurality of louvers defined therein. A beamline of the ion implantation system passes through the entrance and exit, wherein the plurality of louvers of the at least one louvered side are configured to mechanically filter an edge of an ion beam traveling along the beamline. The enclosure can have two louvered sides and a louvered top, wherein respective widths of the entrance and exit of the enclosure, when measured perpendicular to the beamline, are generally defined by a position of the two louvered sides with respect to one another. One or more of the louvered sides can be adjustably mounted, wherein the width of one or more of the entrance and exit of the enclosure is controllable.
Abstract:
An ion implantation system for improving performance and extending lifetime of an ion source is disclosed. A fluorine-containing dopant gas source is introduced into the ion chamber along with one or more co-gases. The one or more co-gases can include hydrogen or krypton. The co-gases mitigate the effects caused by free fluorine ions in the ion source chamber which lead to ion source failure.
Abstract:
A method is disclosed for reducing particle contamination in an ion implantation system, wherein an ion beam is created via the ion source operating in conjunction with an extraction electrode assembly. A cathode voltage is applied to the ion source for generating ions therein, and a suppression voltage is applied to the extraction assembly for preventing electrons in the ion beam from being drawn into the ion source. The suppression voltage is selectively modulated, thereby inducing a current flow or an arc discharge through the extraction assembly to remove deposits on surfaces thereof to mitigate subsequent contamination of workpieces. An improvement to an ion implantation system is also disclosed in accordance with the foregoing, wherein a controller is configured to selectively modulate a voltage between a predetermined voltage and a predetermined suppression voltage generally concurrent with the transferring of the workpiece, thereby inducing a current flow or an arc discharge through the extraction electrode assembly to remove deposits on surfaces thereof to mitigate subsequent contamination of workpieces.
Abstract:
An ion implantation system for improving performance and extending lifetime of an ion source is disclosed whereby the selection, delivery, optimization and control of the flow rate of a co-gas into an ion source chamber is automatically controlled.
Abstract:
An ion implantation system for improving performance and extending lifetime of an ion source is disclosed. A fluorine-containing dopant gas source is introduced into the ion chamber along with one or more co-gases. The one or more co-gases can include hydrogen or krypton. The co-gases mitigate the effects caused by free fluorine ions in the ion source chamber which lead to ion source failure.
Abstract:
A system, apparatus and method for increasing ion source lifetime in an ion implanter are provided. Oxidation of the ion source and ion source chamber poisoning resulting from a carbon and oxygen-containing source gas is controlled by utilizing a hydrogen co-gas, which reacts with free oxygen atoms to form hydroxide and water.
Abstract:
A system, apparatus and method for increasing ion source lifetime in an ion implanter are provided. Oxidation of the ion source and ion source chamber poisoning resulting from a carbon and oxygen-containing source gas is controlled by utilizing a hydrogen co-gas, which reacts with free oxygen atoms to form hydroxide and water.