Abstract:
PROBLEM TO BE SOLVED: To provide an efficient and small-sized beam detector of a small required area which can be easily manufactured at a low cost for sensing a beam present in a visible spectrum region. SOLUTION: A signal formed in a first sensing element is taken out separately from a signal formed in a second sensing element, the first sensing element is partially permeative in a visible beam, and the visible beam which has permeated the first sensing element forms a signal in the second sensing element. COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
Light-emitting organic component comprises: a first charge carrier injection layer (2, 9) and a second charge carrier injection layer and a light emitting layer (6) arranged between them; and a first charge carrier transport layer (4), which is arranged between the first charge carrier injection layer and the light emitting layer, and contains a matrix made of a first material and a charge carrier donor embedded in it, for increasing the charge carrier density. An independent claim is included for production of the organic component, comprising: either providing a cathode, applying a layer, exhibiting an intercalation compound made of a matrix with a charge carrier donor embedded on it, applying an electron transport layer on the layer and producing a further layer for manufacturing the organic component, under preferably a light emitting layer; or providing an anode, applying a hole transport layer on the anode, applying a light emitting layer on the hole transport layer, applying a hole blocking layer on the light emitting layer and an electron transport layer, applying a layer exhibiting an intercalation compound and applying a cathode on the layer.
Abstract:
A radiation detector is disclosed with a detector arrangement, which has a plurality of detector elements, by means of which a detector signal is obtained during operation of the radiation detector, and with a control device, wherein the detector elements each have a spectral sensitivity distribution, and are suited for generating signals, at least one detector element comprises a compound semiconductor material, and this detector element is designed for detecting radiation in the visible spectral region, the radiation detector is designed such that the sensitivity distributions of the detector elements are used to form different spectral sensitivity channels of the radiation detector, a channel signal assigned to the respective sensitivity channel can be generated in these sensitivity channels using the detector elements, and the control device is designed such that the contributions of different channel signals to the detector signal of the radiation detector are differently controlled.
Abstract:
The detector has an active region (4) provided for radiation detection and suitable for signal generation. The active region contains an organic semiconductor material. A filter region (3) is provided for radiation absorption, where the active and filter regions are arranged between a cathode (5) and an anode (2). The active region comprises two different function layers (4a, 4b), which exhibit optical band gaps that are different from each other. One of the function layers absorbs radiation in a wavelength region that comprises wavelengths greater than a mid-wavelength.
Abstract:
In verschiedenen Ausführungsbeispielen wird ein Verfahren zum Herstellen eines optoelektronischen Bauelements bereitgestellt. Das Verfahren kann aufweisen ein Ausbilden mindestens eines Bereichs (220) mit einem erhöhten Brechungsindex an mindestens einer vorgegebenen Position in einem Substrat (202) an einer Oberfläche des Substrats (202)(S4002, S4106) und ein Bilden einer Elektrodenschicht (204) auf oder über der Oberfläche des Substrats (202)(S4006, S4102).
Abstract:
In verschiedenen Ausführungsbeispielen wird ein optoelektronisches Bauelement (100) bereitgestellt, aufweisend: eine erste organische funktionelle Schichtenstruktur (112); eine zweite organische funktionelle Schichtenstruktur (116); und eine Ladungsträger-Erzeugungs-Schichtenstruktur (114) zwischen der ersten organischen funktionellen Schichtenstruktur (112) und der zweiten organischen funktionellen Schichtenstruktur (116), wobei die Ladungsträger-Erzeugungs-Schichtenstruktur (114) eine lochleitende Ladungsträger-Erzeugungs-Schicht(306), eine elektronenleitende Ladungsträger-Erzeugungs-Schicht (302) und eine Diffusionsbarriere-Schichtstruktur (304) zwischen lochleitender Ladungsträger-Erzeugungs-Schicht (306) und elektronenleitender Ladungsträger-Erzeugungs-Schicht (302) aufweist und wobei die Diffusionsbarriere-Schichtstruktur (304) mindestens ein Phthalocyanin-Derivat aufweist.
Abstract:
Es wird ein organisches Licht emittierendes Bauelement angegeben, mit – einer ersten Licht emittierenden Schichtenfolge (3), die dazu eingerichtet ist, im Betrieb des Bauelements Licht eines ersten Wellenlängenbereichs zu emittieren, – einer zweiten Licht emittierenden Schichtenfolge (5), die dazu eingerichtet ist, im Betrieb des Bauelements Licht eines zweiten Wellenlängenbereichs zu emittieren, und – einer Ladungsträger erzeugenden Schichtenfolge (4), die dazu eingerichtet ist, im Betrieb des Bauelements Ladungsträger an die erste Licht emittierende Schichtenfolge (3) und an die zweite Licht emittierende Schichtenfolge (4) abzugeben, wobei – der erste Wellenlängenbereich vom zweiten Wellenlängenbereich verschieden ist, – die Ladungsträger erzeugende Schichtenfolge (4) in einer Stapelrichtung (R) des organischen Licht emittierenden Bauelements zwischen der ersten Licht emittierenden Schichtenfolge (3) und der zweiten Licht emittierenden Schichtenfolge (5) angeordnet ist, und – die Ladungsträger erzeugende Schichtenfolge (4) in der Stapelrichtung (R) eine Dicke (d) von höchstens 50 nm aufweist.
Abstract:
The device has LEDs (2) arranged at two opposite side surfaces of a support body (1) i.e. glass panel. An electrode (3a) is arranged at a main surface (6) of the support electrode. A liquid crystal layer (4) is arranged on an electrode side that is turned away from the supporting body. Another electrode (3b) is arranged on a liquid crystal layer side that is turned away from the former electrode. The radiation emitted from the LEDs is supplied to the support body. The support body and the electrodes are partially radiation-permeable with respect to the radiation emitted from the LEDs. An independent claim is also included for a method for operating an optoelectronic device.
Abstract:
An organic optoelectronic component (1) is disclosed in examples of different embodiments. Said organic optoelectronic component (1) has a first electrode (20), an organic functional layer structure (22) above the first electrode, and a second electrode (23) above the organic functional layer structure (22). The organic functional layer structure (22) comprises a charge carrier pair-generating layer structure (42). The charge carrier pair-generating layer structure (42) comprises electrically conductive nanostructures, the surfaces of which are at least partially covered with a coating material.
Abstract:
In various exemplary embodiments, a method for producing an optoelectronic component is provided. The method can comprise forming of at least one region (220) having an increased refractive index at at least one predefined position in a substrate (202) at a surface of the substrate (202) (S4002, S4106) and forming an electrode layer (204) on or above the surface of the substrate (202) (S4006, S4102).