Abstract:
PROBLEM TO BE SOLVED: To provide a semiconductor chip capable of obtaining improved beam emission efficiency, that is, improved beam strength per employed electric power output unit.SOLUTION: A trench defines, on a reverse side of a thin-film layer, only a single partial region. The partial region substantially does not overlap with front-surface contact structure. On the reverse side, an electrical reverse-side contact is formed only in the partial region and the trench has inner walls, slanted with respect to a principal elongation surface of the thin-film layer for deflecting an electromagnetic beam.
Abstract:
PROBLEM TO BE SOLVED: To provide a radiation emitter 1 having an efficient radiation output. SOLUTION: A radiation emitter has a layer continuation 55 having an active area 2 for generating electromagnetic radiation; an output layer 4 disposed on the first side of the layer continuation 55, for outputting the generated radiation; a reflective layer 3 disposed on a second side opposite to the first side, for reflecting the generated radiation; and a boundary surface 10 of the layer continuation 55 having a structuring part of the side provided with a plurality of projecting structuring elements 6 and facing the reflective layer 3. The reflective layer 3 is connected to the layer continuation 55 so as to have the structuring part corresponding to the structuring part of the boundary surface 10. COPYRIGHT: (C)2008,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To attain improved beam emission efficiency, i.e. beam strength per unit electric power employed, of a semiconductor chip. SOLUTION: A trench defines, on the reverse side of a thin-film layer, only a single partial region which substantially does not have overlap with a front-surface contact structure, wherein on the reverse side, an electrical reverse-side contact is formed exclusively in the partial region and the trench has inner walls, slanted with respect to the principal surface of the thin-film layer serving to deflect an electromagnetic beam. COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
Disclosed is a radiation receptor (1) comprising a semiconductor body (2) that has a first active region (210) and a second active region (220) which are used for detecting radiation. The first active region (210) and the second active region (220) are located at a distance from each other in a vertical direction. A tunnel region (24) is arranged between the first active region (210) and the second active region (220). The tunnel region (24) is connected in an electrically conducting manner to a connecting surface (31) which is used for externally contacting the semiconductor body (2) in an electrical manner between the first active region (210) and the second active region (220). A method for producing a radiation receptor is also disclosed.
Abstract:
A radiation-emitting component is provided, comprising a layer stack based on a semiconductor material, said layer stack having an active layer sequence (A, C1, C2) for producing electromagnetic radiation, characterized in that - on a last layer (C2) of the layer stack in the radiation direction (e) a plurality of metal surfaces (M) are applied, - the metal surfaces (M) have different dimensions (a1, a2) in a first direction (d1) and in a second direction (d2) different from the first, and - the metal surfaces (M) are disposed periodically in the first direction (d1) and periodically in the second direction (d2).
Abstract:
The invention relates to a radiation-emitting body, comprising a layer sequence, having an active layer (10) for producing electromagnetic radiation, a reflection layer (50), which reflects the radiation produced, and at least one intermediate layer (40), which is disposed between the active layer (10) and the reflection layer (50). To this end, the active layer (10) on an interface (15) directed toward the reflection layer (50) comprises a rough region, and the reflection layer (50) is substantially planar on an interface (45) directed toward the active layer (10). The invention further relates to a method for producing a radiation-emitting body, wherein a layer sequence is configured on a substrate having an active layer (10) for producing electromagnetic radiation. To this end, an interface (15) is roughened on the active layer (10) and at least one intermediate layer (40) and a reflection layer (50) are configured.
Abstract:
Die Erfindung betrifft eine optische Messvorrichtung, insbesondere für ein Kraftfahrzeug, umfassend eine Laservorrichtung ausgebildet zur Erzeugung eines in seiner Frequenz modulierbaren Einzelmoden-Laserstrahls sowie einen steuerbaren optischen Modulator, ausgebildet zu einer einstellbaren Amplitudenmodulation des von der Laservorrichtung erzeugten frequenzmodulierten Einzelmoden-Laserstrahls. Die Messvorrichtung enthält zudem eine Detektorvorrichtung ausgebildet zu Empfangen eines Teils des von der Laservorrichtung erzeugten frequenzmodulierten Einzelmoden-Laserstrahls für eine Überlagerung mit einem von einem Objekt reflektierten amplituden- und frequenzmodulierten Einzelmoden-Laserstrahl. Eine Auswerteschaltung ist ausgebildet zur Übertragung des von der Detektorvorrichtung überlagerten Signals in den Frequenzraum und Bestimmung der Entfernung und Geschwindigkeit eines den Einzelmoden-Laserstrahl reflektierenden Objektes.
Abstract:
Es wird eine Vorrichtung (1) mit einem Leiterrahmen (3), einem Formkörper (4) und einer Mehrzahl von Halbleiterchips (2), die zur Erzeugung von Strahlung eingerichtet sind, angegeben, wobei- der Leiterrahmen zwei Anschlussteile (31) zur externen elektrischen Kontaktierung der Vorrichtung aufweist;- der Formkörper an den Leiterrahmen angeformt ist;- der Formkörper für die im Betrieb der Vorrichtung erzeugte Strahlung durchlässig ist; und- die Halbleiterchips auf einer Vorderseite (41) des Formkörpers angeordnet sind und jeweils in Draufsicht auf die Vorrichtung mit dem Formkörper überlappen.Weiterhin wird ein Verfahren zur Herstellung von Vorrichtungen angegeben.
Abstract:
A conversion LED for producing white has a luminophore mixture comprising a first luminophore of the LuAGaG type and a second luminophore of the nitridosilicate type, allowing very high efficiency.