Abstract:
A plurality of elevator shuttles (1-10) are dispatched in a sequence at regular intervals which extend across the average round trip run time for all of the shuttles, by enabling a shuttle to run (101, in response to the shuttle being ready to run (96) following expiration of a dispatching interval (97) which equals the average run time of all the shuttles (91).
Abstract:
An elevator shuttle includes a plurality of elevator hoistways (14, 19, 24) which overlap, the elevator car frames (13, 21, 25) traveling in each hoistway including two decks per cab being carried by the car frame, plus an extra deck on car frames (20) in other than the highest (24) and lowest (14) hoistways. This allows cabs (C) traveling simultaneously, upwardly, in three or more hoistways to pass cabs (A, B) simultaneously traveling downwardly in those hoistways. The cabs may be loaded and unloaded while in the hoistway (Figs. 1, 13, 21) , or while in off-hoistway landing areas (Fig. 28). Embodiments include one cab per hoistway and two cabs per hoistway; three hoistways and four hoistways.
Abstract:
A plurality of elevator shuttles (1-10) are dispatched in a sequence at regular intervals which extend across the average round trip run time for all of the shuttles, by enabling a shuttle to run (101, in response to the shuttle being ready to run (96) following expiration of a dispatching interval (97) which equals the average run time of all the shuttles (91).
Abstract:
A safety gate (24) is slidable vertically from an upper position at an elevator cab landing (22) where it obstructs movement of the elevator cab (20) into a hoistway, and a lower position that permits cab travel between a car frame (29) and the landing. An actuator (42) normally urges the gate upwardly; the actuator is moved by a cam assembly (35) on an approaching elevator car frame so as to slide the gate (24) downward, out of the way of cab motion.