Abstract:
Eine Stranggiesskokille zum Giessen von flüssigen Metallen, insbesondere von flüssigen Stahlwerkstoffen, bei hohen Giessgeschwindigkeiten, zu polygonalen Knüppel-, Vorblock-, Vorprofil-Giesssträngen (1) u. dgl., bestehend aus einer Rohrkokille (2) aus Kupfer oder Kupferlegierungen, deren Eingangs-Querschnitt (3) auf der Eingiessseite (4) eine Querschnitts-Vergrösserung (5) gegenüber dem Ausgangs-Querschnitt (6) auf der Strang-Austrittsseite (7) und Eckenradien (8) aufweist, kann bezüglich Anforderungen an die Abkühlungsvorgänge technologisch prozess-orientiert verbessert werden, indem die innere geometrische Querschnittsform (9) und die zugehörigen Abmessungen (10) analog zur örtlich ableitungsfähigen Menge der Erstarrungswärme bei einer gewählten Giessgeschwindigkeit und analog zur Ausdehnung der Rohrkokille (2) ausgeführt sind.
Abstract:
Um ein Verfahren zur Prozesssteuerung oder Prozessregelung einer Anlage zur Umformung, Kühlung und/oder Wärmebehandlung von Metall, insbesondere von Stahl oder Aluminium, wobei die Anlage mit Stellgliedern zur Einstellung bestimmter Betriebsparameter ausgerüstet ist und dem Verfahrensprozess ein Verfahrensmodell zugrundeliegt, bereitzustellen, mit dem es möglich ist, online gewünschte Gefügebesonderheiten und unter Verwendung von Gefüge Eigenschaftsrelationen gewünschte Werkstoffeigenschaften gezielt einzustellen, sollen online mindestens ein aktueller, für das Metallgefüge aussagekräftiger Wert erfasst und in Abhängigkeit dieses Wertes geeignete Prozesssteuerung- und/oder Prozessregelgrössen zur Einwirkung auf die Stellglieder zur Einstellung gewünschter Gefügeeigenschaften des Metalls ermittelt werden unter Nutzung eines Gefügemodells sowie des dem Prozess zugrundeliegenden Verfahrensmodells.
Abstract:
Die Erfindung betrifft eine Kokille zum Stranggiessen von schmelzflüssigen Metallen, insbesondere von Stahl, mit Kühlkanälen (1) wie Kühlnuten, Kühlschlitzen oder Kühlbohrungen in der von der Kontaktfläche mit der Schmelze abgewandten Kokillenseite (2). Der Wärmeübergang der Kokille wird dadurch verbessert, dass die geometrischen Ausgestaltungen der wärmeübertragenden Flächenbereiche eines Kühlkanals (1) oder einer Gruppe von Kühlkanälen in Form, Querschnittsfläche, Umfang, Grenzflächenbeschaffenheit, Orientierung zur Kontaktfläche, Anordnung und/oder Anordnungsdichte gegenüber der Kontaktfläche der lokalen Ausbildung von Wärmestromdichte und/oder Temperatur der Kontaktfläche (18) im Giessbetrieb, und insbesondere im Giessspiegelbereich (11), angepasst ist.
Abstract:
The invention relates to a method for the continuous casting of slab, thin slab, bloom, preliminary section, round section, tubular section or billet strands (1) and the like from liquid metal in a continuous casting plant (2) in which metal discharges perpendicularly downwards from a mould (3), wherein the metal strip (1) is then guided vertically downwards along a perpendicular strand guide (4) and is cooled in the process, wherein the metal strip (1) is then defelcted from the vertical direction (V) into the horiziontal direction (H) and wherein mechanical forming (5) of the metal strip (1) is effected in the final region of the deflection into the horizonal direction (H) or after the deflection into the horizontal direction (H). In order to obtain a surface which has as little scale as possible, provision is made according to the invention for the metal strip (1) to be cooled with a heat transfer coefficient of between 2500 and 20 000 W/(m 2 K) in a first section (6, 6A, 6B) in the conveying direction (F) of the metal strip (1) downstream of the mould (3) and upstream of the mechanical forming (5), wherein the surface of the metal strip (1) is heated to a temperature above Ac3 or Ar3 in the conveying direction (F) downstream of the cooling in a second section (7) by heat compensation in the metal strip (1) without or with reduced cooling of the surface of the metal strip (1), after which, in a third section (8), the mechanical forming (5) is effected. The invention also relates to a continuous casting plant, in particular for carrying out this method.
Abstract:
According to the invention, a method for process control or process regulation of a unit for moulding, cooling and/or thermal treatment of metal, in particular for steel or aluminium, whereby the unit is provided with actuators for setting particular operating parameters and the method process is based on a method model can be achieved, with which it is possible to adjust online desired structural features and, by using structural property relationships, desired material properties can be adjusted, whereby at least one current value predictive of the metal structure is recorded online and, depending on said value, suitable process control and/or process regulation parameters for acting on the actuators to set desired structure properties of the metal are determined using a structural model and the method model on which the process is based.
Abstract:
The invention relates to a continuous casting mold for casting molten metals, particularly steel materials, at high casting rates to form polygonal billet, bloom, and preliminary section castings (1) and the like. Said mold is comprised of a tubular mold (2) made of copper or of copper alloys whose entry cross-section (3) on the pouring-in side (4) has both a cross-section (5), which is enlarged compared to the exit cross-section (6) on the casting exit side (7), and corner radii (8). The continuous casting mold can be improved in a technologically process-oriented manner with regard to requirements concerning the cooling processes. To this end, the inner geometric cross-sectional shape (9) and the associated dimensions (10) are provided so that they are analogous to the amount of solidification heat, which is capable of being locally dissipated, at a chosen casting rate and are analogous to the extension of the tubular mold (2).
Abstract:
The invention relates to a method for the continuous casting of slab, thin slab, bloom, preliminary section, round section, tubular section or billet strands (1) and the like from liquid metal in a continuous casting plant (2) in which metal discharges perpendicularly downwards from a mould (3), wherein the metal strip (1) is then guided vertically downwards along a perpendicular strand guide (4) and is cooled in the process, wherein the metal strip (1) is then defelcted from the vertical direction (V) into the horiziontal direction (H) and wherein mechanical forming (5) of the metal strip (1) is effected in the final region of the deflection into the horizonal direction (H) or after the deflection into the horizontal direction (H). In order to obtain a surface which has as little scale as possible, provision is made according to the invention for the metal strip (1) to be cooled with a heat transfer coefficient of between 2500 and 20 000 W/(m2 K) in a first section (6, 6A, 6B) in the conveying direction (F) of the metal strip (1) downstream of the mould (3) and upstream of the mechanical forming (5), wherein the surface of the metal strip (1) is heated to a temperature above Ac3 or Ar3 in the conveying direction (F) downstream of the cooling in a second section (7) by heat compensation in the metal strip (1) without or with reduced cooling of the surface of the metal strip (1), after which, in a third section (8), the mechanical forming (5) is effected. The invention also relates to a continuous casting plant, in particular for carrying out this method.
Abstract:
The invention relates to a mould for the continuous casting of molten metals, in particular steel, comprising cooling channels (1), such as cooling grooves, cooling slits or cooling drillings in the side of the mould (2) away from the melt contact surface. According to the invention, the heat transfer in the mould can be improved, whereby the geometric arrangement of the heat transfer planar surfaces of a cooling channel (1) or a group of cooling channels is adjusted in form, cross-sectional area, circumference, boundary surface qualities, orientation with respect to contact surfaces, arrangement and/or arrangement density with respect to the contact surfaces for the local formation of thermal flux density and/or temperature of the contact surfaces (18) during casting operation and in particular in the region of the meniscus (11).