-
公开(公告)号:CN116862021B
公开(公告)日:2024-05-03
申请号:CN202310953891.1
申请日:2023-07-31
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06N20/00
Abstract: 本发明公开了一种基于信誉评估的抗拜占庭攻击的去中心化学习方法及系统,涉及人工智能与信息安全交叉技术领域,该方法包括:基于获取的分布式网络中各个节点的训练数据,通过不断迭代训练实现去中心化学习,其训练过程中:分布式网络中的每一节点获取自节点的邻居节点当前轮次的局部参数,以此计算每一邻居节点当前轮次的信誉贡献值和信誉损失值,确定信誉有效值,进而确定自节点及其每一邻居节点的全局历史信誉值;基于全局历史信誉值为自节点及其每一邻居节点分配权重,进而更新自节点的局部参数并发送至邻居节点。本发明构建信誉评估机制,建立全局历史信誉值模型,通过权重分配,降低拜占庭攻击的影响,达到保护学习模型的目的。
-
公开(公告)号:CN116739114B
公开(公告)日:2023-12-19
申请号:CN202310993716.5
申请日:2023-08-09
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明涉及部署在聚合服务器上对抗模型投毒攻击的联邦学习方法及装置,属于数据安全计算机模型的技术领域。本发明旨在提高联邦学习系统的鲁棒性、提供模型的准确性,以应对模型投毒攻击并达到保护本地数据隐私的技术效果,即通过在模型更新聚合过程中引入鲁棒性机制,以过滤恶意更新和提高系统的整体性能。例如,使用加权聚合方法来剔除恶意参与者的贡献,或者使用去噪和修复技术来降低恶意本地模型的影响。
-
公开(公告)号:CN116881739B
公开(公告)日:2023-12-01
申请号:CN202311146922.9
申请日:2023-09-07
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F18/22 , G06F21/60 , G06F16/335 , G06F16/33 , G06F16/38
Abstract: 一种面向空间关键字相似性的密文安全检索方法,属于数据安全的技术领域,包括:S1.数据拥有者加密空间数据库,构建密文索引,并将其上传至云服务器;S2.搜索用户利用数据拥有者提供的密钥生成搜索令牌;S3.云服务器根据搜索令牌检索密文索引,并返回满足空间范围条件和关键字集相似性条件的密文空间对象。本发明在一定的空间范围内返回与用户期望数据相关的空间数据对象,以在保证较强安全性的同时实现高效搜索。
-
公开(公告)号:CN116881739A
公开(公告)日:2023-10-13
申请号:CN202311146922.9
申请日:2023-09-07
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F18/22 , G06F21/60 , G06F16/335 , G06F16/33 , G06F16/38
Abstract: 一种面向空间关键字相似性的密文安全检索方法,属于数据安全的技术领域,包括:S1.数据拥有者加密空间数据库,构建密文索引,并将其上传至云服务器;S2.搜索用户利用数据拥有者提供的密钥生成搜索令牌;S3.云服务器根据搜索令牌检索密文索引,并返回满足空间范围条件和关键字集相似性条件的密文空间对象。本发明在一定的空间范围内返回与用户期望数据相关的空间数据对象,以在保证较强安全性的同时实现高效搜索。
-
公开(公告)号:CN116456307A
公开(公告)日:2023-07-18
申请号:CN202310522070.2
申请日:2023-05-06
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院) , 江苏海洋大学
Abstract: 本发明公开一种基于Q学习的能量受限物联网数据采集和融合方法,属于利用计算机模型优化无人机群数据采集能耗的技术领域。本发明针对无人机群的碰撞避免、飞行角度变化和节点距离约束,将无人机能耗问题转化为马尔可夫决策过程,应用强化学习算法求解无人机路径决策问题:将无人机与节点之间的距离、无人机飞行角度的变化以及无人机之间的安全距离作为强化学习的奖励,使无人机群协同访问所有节点,并有效降低了能耗。此外,在无人机群任务完成后,动态选择距离基站最近的无人机作为中继无人机,中继无人机将其他无人机采集的数据统一传输到基站,从而降低了无人机群的总体飞行能耗。
-
公开(公告)号:CN119808896A
公开(公告)日:2025-04-11
申请号:CN202510296997.8
申请日:2025-03-13
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: G06N3/098 , G06F21/62 , G06F18/2132 , G06F18/214
Abstract: 本发明属于隐私保护的技术领域,更具体地,涉及面向保隐私异构去中心化学习的正则约束自适应调整方法。所述方法包括:将每个客户端#imgabs0#的本地模型#imgabs1#划分为共享模型#imgabs2#和保留模型#imgabs3#,对共享模型#imgabs4#进行正则化约束;客户端#imgabs5#使用上一轮聚合后的共享模型#imgabs6#和本地保留模型#imgabs7#,基于本地数据集#imgabs8#进行梯度下降更新;通过KL散度对正则化参数#imgabs9#进行动态更新调整;对共享模型进行差分隐私保护,然后将加噪后的共享模型广播给邻居客户端;客户端i的邻居客户端接收加噪后的共享模型并进行聚合,以得到下一迭代轮次的本地模型。本发明在保护数据隐私的同时,减轻数据异质性和差分隐私噪声对模型性能的负面影响。
-
公开(公告)号:CN119293861A
公开(公告)日:2025-01-10
申请号:CN202411845784.8
申请日:2024-12-16
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: G06F21/62 , G06N3/0464 , G06N3/098
Abstract: 本发明属于联邦学习的技术领域,更具体地,涉及面向异构联邦学习的自适应差分隐私保护方法。所述方法包括在模型的不同层次上引入自适应噪声。模型的各层次对整体学习效果的贡献存在差异,为了在加噪的同时尽可能减小对关键特征的破坏,本文基于模型层次的重要性程度对不同部分进行差异化加噪,即在较重要的层次上施加较少噪声,而在次要层次上施加更多噪声。本发明解决了传统的差分隐私联邦学习方法由于噪声的引入,通常会对模型的性能产生负面影响,尤其是降低模型的收敛速度和精度的问题。
-
公开(公告)号:CN119272205A
公开(公告)日:2025-01-07
申请号:CN202411783759.1
申请日:2024-12-06
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: G06F18/2433 , H04L9/40 , G06F18/15 , G06F18/213 , G06F18/2431 , G06N3/0455 , G06N3/0442 , G06N3/084 , G06Q50/06
Abstract: 本发明属于网络安全和数据保护的技术领域,更具体地,涉及基于TGRU模型的虚假数据注入攻击检测与定位方法。所述方法首先通过预处理多种传感器的测量数据,输入到TGRU模型进行训练,结合Transformer的全局特征提取能力与GRU的时间序列处理能力进行数据分析。利用基于欧几里得距离的双重计算机制分析正常数据和攻击数据的分布,设定检测阈值。一旦检测到攻击,系统将当前时刻TGRU模型生成的预测数据与检测到的攻击数据进行整合,训练元模型以实现攻击位置的精确定位。最终,通过优化模型架构减少计算步骤,确保高效运行。本发明解决了现有技术在处理复杂网络环境中的局限性,尤其是在应对高维时序数据时精度不足且计算效率低的问题。
-
公开(公告)号:CN118378255B
公开(公告)日:2024-09-10
申请号:CN202410825770.3
申请日:2024-06-25
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明属于数据安全技术领域,更具体地,涉及一种差分隐私保护约束下抗投毒攻击的联邦学习方法、装置及计算机可读存储介质。包括在客户端定义差分隐私;客户端获取服务端全局模型后使用自身的训练数据集更新本地模型,计算差分隐私噪声并添加到各个客户端的本地模型中;将添加了差分隐私噪声的本地模型发送至服务端,选出恶意客户端;服务端为各个客户端分配权重,然后将各个客户端的本地模型进行聚合得到训练好的全局模型并发送至各个客户端;各个客户端获取训练好的全局模型,完成一次迭代,达到设置训练轮次之后,输出最终全局模型并结束训练。本发明解决了现有技术中投毒攻击防御方案尚无法在差分隐私保护下有效检测出恶意客户端。
-
公开(公告)号:CN117932125B
公开(公告)日:2024-06-14
申请号:CN202410331043.1
申请日:2024-03-22
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F16/903 , G06F21/62 , G06F21/60 , G06F16/901
Abstract: 本发明属于数据安全的技术领域,更具体地,涉及一种支持隐私保护的可验证空间关键字查询方法及装置。该方法包括:数据拥有者端加密其空间数据集,构建密文索引,并将空间数据集和密文索引上传云服务器端;查询用户端根据数据拥有者端提供的密钥信息和辅助参数生成搜索令牌并提交云服务器端;云服务器端根据搜索令牌检索密文索引,并向查询用户端返回相应的空间对象密文信息和验证信息;查询用户端基于密钥信息、辅助验证信息、空间对象密文信息和验证信息,先进行本地验证,再对验证通过的空间对象密文信息进行解密。本发明用于在用户给定的空间范围内返回其所期望的空间数据对象,在保证安全性的同时实现高效搜索,并支持对结果的验证。
-
-
-
-
-
-
-
-
-