-
公开(公告)号:CN110549871A
公开(公告)日:2019-12-10
申请号:CN201910989824.9
申请日:2019-10-17
Applicant: 吉林大学
Abstract: 本发明公开了一种基于分布式驱动车辆的整车控制器及控制方法,整车控制器包括有外部传感器信号处理模块、外部通讯信号处理模块、外部传感器和指示灯供电模块、外部开关状态识别模块、第一供电模块、第二供电模块、MCU、第一信息存储模块和第二信息存储模块,其中外部传感器信号处理模块、外部通讯信号处理模块、外部传感器和指示灯供电模块、外部开关状态识别模块、第一信息存储模块和第二信息存储模块均与MCU相连接,其控制方法为:软件架构为分层结构,共分三层,从上至下依次为应用层、信号传递层和驱动层;有益效果:提供了一种全新的应用于分布式驱动车辆的整车控制器及控制方法。
-
公开(公告)号:CN106809054A
公开(公告)日:2017-06-09
申请号:CN201710056278.4
申请日:2017-01-25
Applicant: 吉林大学
IPC: B60L15/20
CPC classification number: Y02T10/7258 , B60L15/2036 , B60L2240/421 , B60L2240/423
Abstract: 本发明提供了一种转矩定向分配电动驱动桥设计方法,包括以下步骤:依据整车动力性指标完成转矩定向分配电动驱动桥的主驱动电机的参数匹配计算,并根据巡航车速计算转矩定向分配电动驱动桥的圆柱齿轮主减速器速比,并确定主减速器级数;计算双排行星齿轮TV机构特征参数k1、k2和单排双行星齿轮耦合机构的特征参数k0;计算转矩定向分配器的最大差动转矩ΔTmax;确定TV控制电机峰值转矩T1038max范围,以及TV控制电机峰值转速n1038max范围,并据此选取TV控制电机;根据ΔTmax和T1038max计算行星齿轮减速机构传动比C,并确定转矩定向分配电动驱动桥的行星齿轮减速机构的排数、根据各排行星齿轮减速机构特征参数差异化最小的优化目标确定各排特征参数k3、(k4)、(k5)。
-
公开(公告)号:CN104727990A
公开(公告)日:2015-06-24
申请号:CN201510099103.2
申请日:2015-03-06
Applicant: 吉林大学
CPC classification number: Y02T10/121 , Y02T10/144
Abstract: 本发明设计开发了一种分子膜式车用氮氧分离装置,包括涡轮增压器、氮氧分离器、进气阀门、出气阀门、负压泵、电控节流阀,所述涡轮增压器由汽车涡轮增压器中的涡轮驱动,将空气进行压缩,分别送到两路氮氧分离装置中,氮氧分离装置可将空气中的氧气进行分离,输出含氧量高的空气,经出气阀门供给发动机使用。两路氮氧分离装置交替工作,且当两路氮氧分离装置温度过高影响制氧效率时,通过控制电控节流阀开度,打开主进气管路正常提供空气,避免气路堵塞,发动机熄火。本发明所述的车用氮氧分离装置,通过两条支路交替工作,实现了向发动机不间断的提供高浓度氧气,以供燃料燃烧做功,提高燃料燃烧利用率。
-
公开(公告)号:CN104675951A
公开(公告)日:2015-06-03
申请号:CN201510072654.X
申请日:2015-02-11
Applicant: 吉林大学
CPC classification number: B60K1/00 , B60K23/04 , B60K2001/001 , B60K2007/0092 , B60K2023/043 , F16H1/46 , F16H48/08 , F16H48/36 , F16H2048/364 , F16H48/06 , F16H48/38
Abstract: 本发明公开了带有双排行星齿轮转矩定向分配机构的电动差速器,包括,驱动电机、主差速器、外壳、减速行星齿轮系、耦合行星齿轮组和双行星齿轮系,驱动电机与减速行星齿轮系连接为其提供转矩,减速行星齿轮系依次连接耦合行星齿轮组、双行星齿轮系及主差速器,实现为差速器第一输出轴提供与电机输出轴输出的转矩同向的转矩,并为差速器第二输出轴提供与电机输出轴输出的转矩反向的转矩。本发明提供的差速器可以将经过其传输的驱动转矩选择性的定向分配给两输出轴,并且在转矩定向分配时,由于不会改变总转矩,不会使车辆减速,双排行星齿轮机构可以同时兼具转矩耦合功能和减速增扭功能,能够以同轴的方式布置驱动电机,结构紧凑,减少布置空间。
-
公开(公告)号:CN104675581A
公开(公告)日:2015-06-03
申请号:CN201510100481.8
申请日:2015-03-06
Applicant: 吉林大学
IPC: F02M25/12
CPC classification number: Y02T10/121
Abstract: 本发明设计了一种离心分子膜式车用氮氧分离装置,包括:壳体,转子、以及分子膜,在壳体内形成有容纳空气的容置空腔,转子在容置空腔内旋转带动容置空腔内空气做离心运动并自上而下流动,分子膜,其设置在所述容置空腔内的下部外侧,并与所述壳体围成单独的容纳富氧空气的氧气容纳腔,分子膜拦截空气中的氮气以使空气中的氧气进入所述氧气容纳腔。本发明提供的离心分子膜式车用氮氧分离装置,将离心法与分子膜法结合使用,使用离心法实现氮氧初步分离,再通过分子膜进一步分离,该结构避免了分子膜处的富氮空气的积累,增加了分子膜使用寿命。与现有技术相比,具结构简单、制造成本低、装置体积小、氧提纯效果佳、使用寿命高等特点。
-
公开(公告)号:CN111422197B
公开(公告)日:2024-12-13
申请号:CN202010420366.X
申请日:2020-05-18
Applicant: 吉林大学
Abstract: 本发明涉及一种考虑智能车群流量的智能驾驶车辆主动换道系统,换道系统包括摄像头、雷达、轮速传感器、IMU组件、通信模块、GNSS模块、ECU模块、HMI模块及运动执行模块;换道综合决策方法包括:获取本车辆以及环境车辆的运动信息、道路基本信息、判断换道的运动增益、计算对应的纵向最小安全距离、判断换道行为是否对车流量造成较大影响等步骤,本发明在传统的最小安全距离模型的基础上,分别在直道和弯道等不同道路情况下,考虑道路曲率对最小安全距离模型的影响,综合考虑换道行为对目标车道车流量的影响,建立了换道系统和综合决策模型,为智能网联汽车在换道时提供切实可行的决策依据,最终得到更全面、更经济以及更高效的综合换道控制方法。
-
公开(公告)号:CN108312839B
公开(公告)日:2024-05-28
申请号:CN201810206910.3
申请日:2018-03-14
Applicant: 吉林大学
Abstract: 本发明公开了一种应用于内转子轮毂电机驱动的双横臂前悬架系统,包括:转向节,其具有向上延伸支臂;上控制臂,其和所述支臂的顶端铰接形成第一铰接点;下控制臂;其和所述转向节的下端铰接形成第二铰接点;减振器球铰下支臂,包括一段侧开口空心圆柱体和与所述空心圆柱体垂直布置的矩形平板,所述矩形平板外伸末端通过球头销连接所述支臂的中部形成第三铰接点;弹簧减振器总成,其上端支撑在车身上,下部的缸筒固定在所述空心圆柱体内;内转子轮毂电机,其与所述转向节的中空圆柱体相配合;其中,第三铰接点位于所述第一铰接点和第二铰接点的连线上。本发明避免了轮毂电机对于悬架部件的布置和车轮转向、上下运动时各部件的干涉问题。
-
公开(公告)号:CN111361564B
公开(公告)日:2023-07-07
申请号:CN202010357259.7
申请日:2020-04-29
Applicant: 吉林大学
Abstract: 本发明涉及一种考虑效益最大化的车道变更系统及综合决策方法,车道变更系统包括摄像头、雷达、IMU组件、通信模块、导航模块、信息反馈模块及电子控制模块;车道变更综合决策方法包括:获取本车周围环境信息、本车辆以及环境车辆的运动信息、数据处理、计算相应的纵向最小安全距离、判断是否满足车道变更的最大效益等步骤,本发明基于智能驾驶员模型,考虑车道变更时周围车辆效益的效益最大化,在直道和弯道等不同道路情况下,综合考虑道路曲率对最小安全距离模型的影响,建立了车道变更系统和综合决策模型,为智能汽车在换道时提供合理的决策依据,最终得到更全面、更舒适、更安全以及更经济的综合车道变更控制方法。
-
公开(公告)号:CN106958488B
公开(公告)日:2023-06-20
申请号:CN201710372955.3
申请日:2017-05-24
Applicant: 吉林大学
Abstract: 本发明公开了一种可变压缩比发动机,包括:曲柄箱;多组可变曲轴,曲轴臂调节装置,其包括:转轴,其可旋转支撑在所述曲柄箱内,所述转轴一端具有锁死装置;多个齿轮,其固定设置在所述转轴上,所述齿轮与所述圆盘齿轮啮合,能够带动所述圆盘齿轮旋转,即发动机曲轴臂长度是可变的,通过改变曲轴臂的长度可以改变发动机的压缩比,从而有效提高发动机的动力性和经济性。
-
公开(公告)号:CN112109708A
公开(公告)日:2020-12-22
申请号:CN202011154150.X
申请日:2020-10-26
Applicant: 吉林大学
Abstract: 本发明涉及一种考虑驾驶行为的自适应巡航控制系统及其控制方法,所述的控制系统包括毫米波雷达、无线通信系统、IMU组件、轮速传感器、HMI模块、发动机控制器模块,ABS控制器模块、智能学习电子控制系统及车辆纵向控制系统;考虑驾驶行为的自适应巡航控制系统的控制方法包括:获取前方环境信息、本车车辆以及目标跟车车辆的运动信息、数据处理、模式决策,计算纵向加速度等步骤;本发明基于自适应巡航控制系统分层控制控制架构,综合分析驾驶员行为,在跟车模式下设计一种考虑驾驶行为的自适应巡航控制系统,在保证安全性的条件下,加强是驾驶员的驾驶体验,增强驾驶员对自适应巡航控制系统的接受度和认可度。
-
-
-
-
-
-
-
-
-