Abstract:
An electrostatic oiling system for use with single blanks in batch systems having an open spray chamber without the need for a negative vacuum chamber. Further, the provided electrostatic oiling system may utilize induction beams and a charge wall that allows for utilization of a smaller vacuum system. Further, the provided electrostatic oiling system may provide variable blank coverage without the need for metered pumps.
Abstract:
The present technology relates to an information processing apparatus and an information processing system that enable accurate detection of a droplet from a dispenser. The information processing apparatus includes: an event sensor including a pixel configured to photoelectrically convert an optical signal and output a pixel signal, the event sensor being configured to output a temporal luminance change of the optical signal as an event signal on the basis of the pixel signal; and a processor configured to detect a droplet injected from the dispenser on the basis of the event signal. The present technology can be applied to, for example, a dispenser control system that controls a dispenser, and the like.
Abstract:
An electrostatic oiling system for use with single blanks in batch systems having an open spray chamber without the need for a negative vacuum chamber. Further, the provided electrostatic oiling system may utilize induction beams and a charge wall that allows for utilization of a smaller vacuum system. Further, the provided electrostatic oiling system may provide variable blank coverage without the need for metered pumps.
Abstract:
An exemplary embodiment of the present invention provides an electrostatic metal porous body forming apparatus including: a transfer module transferring a porous body substrate; and a coating module coating a metal powder on the porous body substrate, wherein the transfer module includes a substrate supporter fixing the porous body substrate while the porous body substrate is transferred, and wherein the coating module includes: an electrifier including a first electrode electrifying the metal powder, a second electrode facing the first electrode, a first power supplier connected with the first electrode supplying electricity to the first electrode, and a second power supplier connected with the second electrode supplying electricity electrified with an opposite charge to a charge caused by the electrification of the first electrode to the second electrode, and generating a pulse type of voltage; and a metal powder supplier including a metal powder vessel storing the metal powder therein and supplying the metal powder to the outside, and an outlet separately disposed above or below the porous body substrate injecting the metal powder, and transferring or injecting the metal powder that is electrified and coated by the electrifier.
Abstract:
Various exemplary illustrations of an electrode assembly for an electrostatic atomizer, for example for a rotation atomizer, and exemplary methods of making and/or using the same, are disclosed. An exemplary electrode assembly may include an electrode holder arrangement for holding at least one electrode creating an electrostatic field about a symmetrical axis, wherein there is a dielectric material for influencing a discharge current component extending in the direction of the symmetrical axis.
Abstract:
An electrostatic spraying device has a capability of confirming that the device is ready for making an electrostatic spraying of the liquid composition on a user's skin. The device includes a nozzle and a pump for dispensing the liquid composition out through the nozzle. An emitter electrode is disposed to electrostatically charge the liquid composition being dispensed for making the electrostatic spraying. The device is provided with a power switch and a selector for selection between a spraying mode and a dripping mode. In the dripping mode, the pump is alone actuated to dispense the liquid composition absent electrostatic charge. In the spraying mode, both of the pump and the emitter electrode are activated to make the electrostatic spraying. Thus, the user can be easy to drip the liquid composition by simply manipulating the selector prior to initiating the electrostatic spraying.
Abstract:
The present disclosure provides a device for controlling the shape of an aerosol particle condensation growth flow field through an electromagnetic field. The device includes an aerosol growth device and a power supply. The aerosol growth device includes a porous medium, magnetic rubber and an electromagnet group. The magnetic rubber is sleeved in an inner cavity of the electromagnet group, and the porous medium is sleeved in an inner cavity of the magnetic rubber. The magnetic rubber is clung or clings to the porous medium, and the power supply is connected with the electromagnet group. The present disclosure also provides a method for controlling the shape of the aerosol particle condensation growth flow field through the electromagnetic field.
Abstract:
A fluidized bed spray drying system for drying liquid into powder including an elongated drying chamber, a spray nozzle assembly at an upper end of the drying chamber and a powder collection chamber at a lower end of the drying chamber. A drying gas inlet is provided in the powder collection chamber and a drying gas outlet is provided at an upper end of the drying chamber. A plurality of cylindrical filter elements at the upper end of the drying chamber are in communication with the exhaust gas outlet for filtering drying gas borne powder from drying gas exiting the drying chamber.
Abstract:
An electrostatic atomizing device includes a discharge section capable of retaining a liquid, a voltage applying section for applying a voltage to the discharge section, and a control section for setting the voltage applied by the voltage applying section to a given voltage at which a charged particulate water can be produced in an amount equal to or greater than a given amount. The control section is configured to set the voltage applied by the voltage applying section to a voltage lower than the given voltage at an operation start, and then to change the lower voltage to the given voltage. The electrostatic atomizing device can shorten a time needed before the electrostatic atomizing phenomenon occurs.
Abstract:
A system capable of depositing a matrix film containing a low amount of impurities (e.g. neutral particles) is provided. The system includes: a first plate electrode 120 having an attachment surface on which a sample plate P is to be attached; a second plate electrode 130 arranged so as to face the attachment surface; a nozzle 110 for spraying a liquid containing a matrix substance into the space between the two electrodes 120 and 130 by an electrospray method, the nozzle 110 arranged so that none of the electrodes 120 and 130 lies on the central axis A of a spray flow of the liquid; and an electric field creator 140 for creating, between the two electrodes 120 and 130, an electric field for forcing electrically charged droplets contained in the spray flow of the liquid containing the matrix substance to move toward the attachment surface.