Abstract:
A device may determine a calibration value for a spectrometer using light from a first light source; deactivate the first light source after determining the calibration value; perform measurement with regard to a sample based on the calibration value, wherein the measurement of the sample is performed using light from a second light source; determine that the calibration value is to be updated; and update the calibration value using the light from the first light source.
Abstract:
A device may determine a calibration value for a spectrometer using light from a first light source; deactivate the first light source after determining the calibration value; perform measurement with regard to a sample based on the calibration value, wherein the measurement of the sample is performed using light from a second light source; determine that the calibration value is to be updated; and update the calibration value using the light from the first light source.
Abstract:
The invention relates to a method for measuring a concentration of a gas in a gas mixture, said method comprising that: a light beam modulated in a ramp shape and/or in a step shape in its wavelength and additionally periodically modulated, in particular in its wavelength, is transmitted from a light source, in particular a laser, into a measurement zone; the modulated light beam passes through a gas mixture in the measurement zone and is detected as reception light by a detector, wherein the reception light is converted by the detector into a detector signal; a derivative signal is determined based on the detector signal by performing a transformation of the detector signal into the frequency range, in particular by a Fourier transform of the detector signal, wherein an evaluation of the detector signal transformed into the frequency range is performed, in particular only, for an n-fold of the frequency of the modulated light beam in order to obtain the derivative signal; and at least two measurement values of a phase of the derivative signal are determined and a correction function is calculated based on the determined measurement values of the phase of the derivative signal in order to correct the derivative signal with the correction function.
Abstract:
A device may determine a calibration value for a spectrometer using light from a first light source; deactivate the first light source after determining the calibration value; perform measurement with regard to a sample based on the calibration value, wherein the measurement of the sample is performed using light from a second light source; determine that the calibration value is to be updated; and update the calibration value using the light from the first light source.
Abstract:
A method and apparatus for absorbance correction in a spectroscopic heating value sensor in which a reference light intensity measurement is made on a non-absorbing reference fluid, a light intensity measurement is made on a sample fluid, and a measured light absorbance of the sample fluid is determined. A corrective light intensity measurement at a non-absorbing wavelength of the sample fluid is made on the sample fluid from which an absorbance correction factor is determined. The absorbance correction factor is then applied to the measured light absorbance of the sample fluid to arrive at a true or accurate absorbance for the sample fluid.
Abstract:
Automatic zeroing apparatus zeroes an infrared gas analyzer automatically upon the occurrence of preselected conditions to indicate zero in the absence of absorption of infrared radiation by a gas mixture being analyzed. The gas analyzer has a sample cell for containing a gas mixture to be analyzed. Infrared radiation directed through the sample cell is detected at a preselected wavelength to produce a detection signal. A signal processor outputs a signal systematically related to the difference between the detection signal and a reference signal. For zeroing the sample cell is filled with gas substantially nonabsorbent of infrared radiation at the respective characteristic wavelength. A comparator produces an error signal when the output signal differs from zero. A gain control automatically controls the signal level of the detection signal to reduce the output signal substantially to zero with the nonabsorbent gas filling the sample cell. The preselected conditions may include the passage of a predetermined time and a temperature drift beyond a predetermined limit.
Abstract:
A method and apparatus for absorbance correction in a spectroscopic heating value sensor in which a reference light intensity measurement is made on a non-absorbing reference fluid, a light intensity measurement is made on a sample fluid, and a measured light absorbance of the sample fluid is determined. A corrective light intensity measurement at a non-absorbing wavelength of the sample fluid is made on the sample fluid from which an absorbance correction factor is determined. The absorbance correction factor is then applied to the measured light absorbance of the sample fluid to arrive at a true or accurate absorbance for the sample fluid.
Abstract:
A non-dispersive infra-red gas detector includes a condensation eliminating heater. The heater can be intermittently energized in response to a signal received from an environmental sensor. Signals from a gas sensor in the detector can be processed to determine when to energize the heater.
Abstract:
A non-dispersive infra-red gas detector includes a condensation eliminating heater. The heater can be intermittently energized in response to a signal received from an environmental sensor. Signals from a gas sensor in the detector can be processed to determine when to energize the heater.