Abstract:
A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.
Abstract:
A method and apparatus satisfying growing demands for improving the precision of angle of incidence of implanting ions that impact a semiconductor wafer and the precision of ribbon ion beams for uniform doping of wafers as they pass under an ion beam. The method and apparatus are directed to the design and combination together of novel magnetic ion-optical transport elements for implantation purposes. The design of the optical elements makes possible: (1) Broad-range adjustment of the width of a ribbon beam at the work piece; (2) Correction of inaccuracies in the intensity distribution across the width of a ribbon beam; (3) Independent steering about both X and Y axes; (4) Angle of incidence correction at the work piece; and (5) Approximate compensation for the beam expansion effects arising from space charge. In a practical situation, combinations of the elements allow ribbon beam expansion between source and work piece to 350 millimeter, with good uniformity and angular accuracy. Also, the method and apparatus may be used for introducing quadrupole fields along a beam line.
Abstract:
A method and apparatus satisfying growing demands for improving the precision of angle of incidence of implanting ions that impact a semiconductor wafer and the precision of ribbon ion beams for uniform doping of wafers as they pass under an ion beam. The method and apparatus are directed to the design and combination together of novel magnetic ion-optical transport elements for implantation purposes. The design of the optical elements makes possible: (1) Broad-range adjustment of the width of a ribbon beam at the work piece; (2) Correction of inaccuracies in the intensity distribution across the width of a ribbon beam; (3) Independent steering about both X and Y axes; (4) Angle of incidence correction at the work piece; and (5) Approximate compensation for the beam expansion effects arising from space charge. In a practical situation, combinations of the elements allow ribbon beam expansion between source and work piece to 350 millimeter, with good uniformity and angular accuracy. Also, the method and apparatus may be used for introducing quadrupole fields along a beam line.
Abstract:
To measure the intensity profile of an electron beam the electron beam is conducted on to a measuring structure having areas with different back-scattering properties, and back-scattered electrons which are produced by scanning of the measuring structure by the electron beam by means of a deflector unit are measured by a sensor ring. The measuring structure can preferably be installed into and removed from an electron-beam welder and consists of a graphite slab from which a tungsten needle projects perpendicularly.
Abstract:
A method of electron-beam welding is disclosed, particularly for welding alloys such as ZIRCALOY-2 or -4. Narrow, deep welds of minimal porosity are produced by defocusing the beam at its point of impingement on the joint. A short, narrow dike is provided on the surface of the joint within which pressure of the molten metal is built up. This pressure suppresses appreciable loss of alloying components from the weld metal.
Abstract:
The invention relates to a method of welding a vitreous biological sample at a temperature below the glass transition temperature of approximately −137° C. to a micromanipulator, also kept at a temperature below the glass transition temperature. Where prior art methods used IBID with, for example, propane, or a heated needle (heated resistively or by e/g/laser), the invention uses a vibrating needle to locally melt the sample. By stopping the vibration, the sample freezes to the micromanipulator. The heat capacity of the heated parts is small, and the amount of material that stays in a vitreous condition thus large.
Abstract translation:本发明涉及一种将玻璃态生物样品在低于大约-137℃的玻璃化转变温度的温度下焊接到也保持在低于玻璃化转变温度的温度下的显微操纵器的方法。 当现有技术方法使用IBID与例如丙烷或加热针(电阻加热或e / g /激光)时,本发明使用振动针来局部熔化样品。 通过停止振动,样品冻结到显微操纵器。 加热部件的热容量小,因此玻璃状态的材料的量变大。
Abstract:
A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.
Abstract:
A high-power amplifier having a current-adding array is provided for high-speed driving of an inductive element, e.g., a deflection coil of an electron beam gun. The amplifier includes a first voltage node (U1) and a second voltage node (UV), at least one of which is connected to a regulated power supply, and a plurality of first switchable bridges (B11, B12, B13, . . . , B1k) connected in parallel between the first and second voltage nodes. Each switchable bridge includes at least one resistor (R11, R12, R13, . . . , R1k) with a resistance value that is selected so that a first resistor (R11) has a first resistance value WR11 equal to Rmin, a second resistor (R12) has a second resistance value WR12 greater than or equal to WR11 and an n-th resistor has an n-th resistance value WR1n greater than or equal to WR1n−1.
Abstract:
A method and apparatus satisfying growing demands for improving the precision of angle of incidence of implanting ions that impact a semiconductor wafer and the precision of ribbon ion beams for uniform doping of wafers as they pass under an ion beam. The method and apparatus are directed to the design and combination together of novel magnetic ion-optical transport elements for implantation purposes. The design of the optical elements makes possible: (1) Broad-range adjustment of the width of a ribbon beam at the work piece; (2) Correction of inaccuracies in the intensity distribution across the width of a ribbon beam; (3) Independent steering about both X and Y axes; (4) Angle of incidence correction at the work piece; and (5) Approximate compensation for the beam expansion effects arising from space charge. In a practical situation, combinations of the elements allow ribbon beam expansion between source and work piece to 350 millimeter, with good uniformity and angular accuracy. Also, the method and apparatus may be used for introducing quadrupole fields along a beam line.