Abstract:
A circuit board includes a composite layer of a non-conductor inorganic material and an organic material, a plurality of conductive structures, a first built-up structure, and a second built-up structure. The composite layer of the non-conductor inorganic material and the organic material has a first surface and a second surface opposite to each other and a plurality of openings. The conductive structures are respectively disposed in the openings of the composite layer of the non-conductor inorganic material and the organic material. The first built-up structure is disposed on the first surface of the composite layer of the non-conductor inorganic material and the organic material and electrically connected to the conductive structures. The second built-up structure is disposed on the second surface of the composite layer of the non-conductor inorganic material and the organic material and electrically connected to the conductive structures.
Abstract:
A vapor chamber structure including a thermally conductive shell, a capillary structure layer, and a working fluid is provided. The thermally conductive shell includes a first thermally conductive portion and a second thermally conductive portion. The first thermally conductive portion has at least one first cavity. The second thermally conductive portion and the first cavity define at least one sealed chamber, and a pressure in the sealed chamber is lower than a standard atmospheric pressure. The capillary structure layer covers an inner wall of the sealed chamber. The working fluid is filled in the sealed chamber.
Abstract:
A circuit board including an interconnect substrate and a multilayer structure is provided. The interconnect substrate includes a core layer and a conductive structure disposed on the core layer. The multilayer structure is disposed on the conductive structure. The multilayer structure includes a plurality of dielectric layers and a plurality of circuit structures. The circuit structures are disposed in the dielectric layers. A topmost layer in the circuit structures is exposed to the dielectric layers to be in contact with the conductive structure. A pattern of the topmost layer in the circuit structures and a pattern of a top surface of the conductive structure are engaged with each other.
Abstract:
A composite substrate structure includes a circuit substrate, a first anisotropic conductive film, a first glass substrate, a dielectric layer, a patterned circuit layer and a conductive via. The first anisotropic conductive film is disposed on the circuit substrate. The first glass substrate is disposed on the first anisotropic conductive film and has a first surface and a second surface opposite to the first surface. The first glass substrate includes a first circuit layer, a second circuit layer and at least one first conductive via. The first circuit layer is disposed on the first surface. The second circuit layer is disposed on the second surface. The first conductive via penetrates the first glass substrate and is electrically connected to the first circuit layer and the second circuit layer. The first glass substrate and the circuit substrate are respectively located on two opposite sides of the first anisotropic conductive film.
Abstract:
A package structure includes a first substrate, a second substrate, a plurality of conductive pillars and an adhesive layer. The first substrate includes a plurality of vias and a plurality of pads. The pads are disposed on the first substrate, and fill the vias. The second substrate is disposed opposite to the first substrate. Each conductive pillar electrically connects each pad and the second substrate, and the adhesive layer fills the gaps between the conductive pillars. A bonding method of the package structure is also provided.
Abstract:
A manufacturing method of an interposed substrate is provided. A photoresist layer is formed on a metal carrier. The photoresist layer has plural of openings exposing a portion of the metal carrier. Plural of metal passivation pads and plural of conductive pillars are formed in the openings. The metal passivation pads cover a portion of the metal carrier exposed by openings. The conductive pillars are respectively stacked on the metal passivation pads. The photoresist layer is removed to expose another portion of the metal carrier. An insulating material layer is formed on the metal cattier. The insulating material layer covers the another portion of the metal carrier and encapsulates the conductive pillars and the metal passivation pads. An upper surface of the insulating material layer and a top surface of each conductive pillar are coplanar. The metal carrier is removed to expose a lower surface of the insulating material layer.
Abstract:
A chip package structure including a molding compound, a carrier board, a chip, a plurality of conductive pillars and a circuit board is provided. The carrier board includes a substrate and a redistribution layer. The substrate has a first surface and a second surface. The redistribution layer is disposed on the first surface. The chip and the conductive pillars are disposed on the redistribution layer. The molding compound covers the chip, the conductive pillars, and the redistribution layer. The circuit board is connected with the carrier board, wherein the circuit board is disposed on the molding compound, such that the chip is located between the substrate and the circuit board, and the chip and the redistribution layer are electrically connected with the circuit board through the conductive pillars. Heat generated by the chip is transmitted through the substrate from the first surface to the second surface to dissipate.
Abstract:
An embedded component structure includes a wiring board, a component and an encapsulant. The wiring board has a front side, a reverse side opposite to the front side, an opening and an interconnection layer. The opening penetrates the wiring board and connects the front side and the reverse side of the wiring board. The interconnection layer is located on the front side of the wiring board and extends toward the opening. The component includes an active surface, a back side opposite to the active side, and a working area located on the active surface. The active surface is connected to the interconnection layer of the wiring board. The encapsulant is filled inside the opening and covers the component, which makes the working area of the component exposed. Besides, a method of the embedded component structure is also provided.
Abstract:
A manufacturing method of an interposed substrate is provided. A metal-stacked layer comprising a first metal layer, an etching stop layer and a second metal layer is formed. A patterned conductor layer is formed on the first metal layer, wherein the patterned conductor layer exposes a portion of the first metal layer. A plurality of conductive pillars is formed on the patterned conductor layer, wherein the conductive pillars are separated from each other and stacked on a portion of the patterned conductor layer. An insulating material layer is formed on the metal-stacked layer, wherein the insulating material layer covers the portion of the first metal layer and encapsulates the conductive pillars and the other portion of the patterned conductor layer. The metal-stacked layer is removed to expose a lower surface opposite to an upper surface of the insulating material layer and a bottom surface of the patterned conductor layer.
Abstract:
A method of packaging an electrical device including following steps is provided. A circuit board including a substrate and a first conductive pattern is provided. The electrical device having an electrode is disposed on the circuit board. A dielectric layer is formed on the circuit board to cover the electrical device, the electrode and the first conductive pattern, wherein a first caving pattern is formed in the dielectric layer by the first conductive pattern. The dielectric layer is patterned to form a through hole and a second caving pattern connecting with the through hole and exposing the electrode. A conductive material is filled in the through hole and the second caving pattern to form a conductive via in the through hole and a second conductive pattern in the second caving pattern. The substrate is removed. Moreover, the electrical device package structure is also provided.