Abstract:
Embodiments of processes for producing propylene utilize a dual catalyst system comprising a mesoporous silica catalyst impregnated with metal oxide and a mordenite framework inverted (MFI) structured silica catalyst downstream of the mesoporous silica catalyst, where the mesoporous silica catalyst includes a pore size distribution of at least 2.5 nm to 40 nm and a total pore volume of at least 0.600 cm3/g, and the MFI structured silica catalyst has a total acidity of 0.001 mmol/g to 0.1 mmol/g. The propylene is produced from the butene stream via metathesis by contacting the mesoporous silica catalyst and subsequent cracking by contacting the MFI structured silica catalyst.
Abstract:
A porous substrate susceptible to one or both of hydroxylation and alkoxylation by a first protic solvent is exposed to a first relative pressure of the first protic solvent. The porous substrate includes a first plurality of pores having a first average pore diameter and a second plurality of pores having a second average pore diameter that is greater than the first average pore diameter. The first relative pressure is effective to one or both of hydroxylate or alkoxylate substantially only pores of the first average pore diameter to form a first modified porous substrate. The first modified porous substrate is reacted with a first functionalizing reagent that is effective to functionalize one or both of hydroxylated or alkoxylated surfaces, thereby functionalizing substantially only the first plurality of the pores, to form a first functionalized porous substrate.
Abstract:
There is disclosed a surprising reaction of an alkane thiol with a catalyst and heat to become dehydrogenated and form a thiophene rather than an expected desulfurization reaction to form the corresponding alkane or alkene. Moreover, there are disclosed surprising results regarding the form of a catalyst to allow a reaction of an alkane thiol to form the dehydrogenated thiophene at lower temperatures and at higher conversion percentages to allow for more efficient recovery of thiophenes to allow for recycling and reuse of thiophenes to hydrogenate to form alkane thiols. Further still, there is disclosed a set of reaction conditions and catalyst presentation that allows for recovery of usable diatomic hydrogen gas from a dehydrogenation reaction of substituted or unsubstituted cyclic thioethers to substituted or unsubstituted thiophene.
Abstract:
The present disclosure generally relates to a silica-titanium catalyst prepared by first reacting a solid support with a metal alkoxide and then depositing titanium onto the solid support for the epoxidation of alkenes and aralkenes and a method of preparing the catalyst thereof. In some embodiments, the present disclosure relates to methods of using the catalyst described herein for the production of epoxides.
Abstract:
A method of forming a catalyst material includes hindering the reaction rate of a displacement reaction and controlling the formation of platinum clusters, where an atomic layer of metal atoms is displaced with platinum atoms, to produce a catalyst material that includes an atomic layer of the platinum atoms.
Abstract:
The present invention provides a photocatalyst coated body which can realize a sufficient photocatalytic activity and adhesiveness with a substrate, without significantly impairing an appearance of a substrate, especially an exterior building material. The photocatalyst coated body has a structure including a substrate, an intermediate layer formed on the substrate, and a photocatalyst layer formed on the intermediate layer. The intermediate layer includes inorganic oxide particles having an average particle diameter of nanosize. The photocatalyst layer includes photocatalyst particles having an average particle diameter of more than 0 μm to less than 10 μm and inorganic oxide particles having an average particle diameter of nanosize. A sum of a film thickness of the intermediate layer and a film thickness of the photocatalyst layer is 0.3 μm or more to 1.5 μm or less.
Abstract:
A method comprising a) drying a support material comprising silica at temperature in the range of from about 150° C. to about 220° C. to form a dried support; b) contacting the dried support with methanol to form a slurried support; c) subsequent to b), cooling the slurried support to a temperature of less than about 60° C. to form a cooled slurried support; d) subsequent to c), contacting the cooled slurried support with a titanium alkoxide to form a titanated support; and e) thermally treating the titanated support by heating to a temperature of equal to or greater than about 150° C. for a time period of from about 5 hours to about 30 hours to remove the methanol and yield a dried titanated support.
Abstract:
An oxide catalyst is formed by vaporizing a quantity of at least one precursor material or catalyst material thereby forming a vapor cloud. The vapor cloud is quenched forming precipitate nanoparticles. The nanoparticles are impregnated onto supports. The supports are able to be used in existing heterogeneous catalysis systems. A system for forming oxide catalysts comprises means for vaporizing a quantity of at least one precursor material or at least one catalyst material, quenching the resulting vapor cloud and forming precipitate nanoparticles. The system further comprises means for supports with the nanoparticles.
Abstract:
A method for converting an olefin or an alcohol has a pretreatment step of obtaining a conductive catalyst by a pretreatment for suppressing electrostatic charging of a non-conductive catalyst and a step of converting an olefin or an alcohol by a fluidized bed reaction using the conductive catalyst.
Abstract:
The present invention relates to a process to make light olefins and aromatics, in a combined XTO-OC process, from an oxygen-containing, halogenide-containing or sulphur-containing organic feedstock comprising: a0) providing a first portion and a second portion of said oxygen-containing, halogenide-containing or sulphur-containing organic feedstock, a) providing a catalyst comprising zeolitic molecular sieves containing at least 10 membered ring pore openings or larger in their microporous structure, b) providing an XTO reaction zone, an OC reaction zone and a catalyst regeneration zone, said catalyst circulating in the three zones, such that at least a portion of the regenerated catalyst is passed to the OC reaction zone, at least a portion of the catalyst in the OC reaction zone is passed to the XTO reaction zone and at least a portion of the catalyst in the XTO reaction zone is passed to the regeneration zone; c) contacting the first portion of said oxygen-containing, halogenide-containing or sulphur-containing organic feedstock in the XTO reactor with the catalyst at conditions effective to convert at least a portion of the feedstock to form a XTO reactor effluent comprising light olefins and a heavy hydrocarbon fraction; d) separating said light olefins from said heavy hydrocarbon fraction; e) contacting said heavy hydrocarbon fraction and the second portion of said oxygen-containing, halogenide-containing or sulphur-containing organic feedstock in the OC reactor with the catalyst at conditions effective to convert at least a portion of said heavy hydrocarbon fraction and oxygen-containing, halogenide-containing or sulphur-containing organic feedstock to light olefins and aromatics.