Abstract:
Exemplary microelectromechanical system (MEMS) devices, and methods for fabricating such are disclosed. An exemplary method includes providing a silicon-on-insulator (SOI) substrate, wherein the SOI substrate includes a first silicon layer separated from a second silicon layer by an insulator layer; processing the first silicon layer to form a first structure layer of a MEMS device; bonding the first structure layer to a substrate; and processing the second silicon layer to form a second structure layer of the MEMS device.
Abstract:
Embodiments of the present disclosure include MEMS devices and methods for forming MEMS devices. An embodiment is a method for forming a microelectromechanical system (MEMS) device, the method including forming a MEMS wafer having a first cavity, the first cavity having a first pressure, and bonding a carrier wafer to a first side of the MEMS wafer, the bonding forming a second cavity, the second cavity having a second pressure, the second pressure being greater than the first pressure. The method further includes bonding a cap wafer to a second side of the MEMS wafer, the second side being opposite the first side, the bonding forming a third cavity, the third cavity having a third pressure, the third pressure being greater than the first pressure and less than the second pressure.
Abstract:
An inertial force sensor that can suppress fluctuation of detection sensitivity even if an external stress is applied to the inertial force sensor. Angular velocity sensor (1), that is, an inertial force sensor includes ceramic substrate (6), lower lid (4) adhering to ceramic substrate (6) with adhesives (11a and 11b) (first adhesives), and sensor element (2) adhering to lower lid (4) with adhesives (10a and 10b) (second adhesives). The elastic moduli of adhesives (11a and 11b) are smaller than those of adhesives (10a and 10b).
Abstract:
A device including a semiconductor and a substrate. The substrate has a first surface and a second surface that opposes the first surface. The substrate has a hole that extends from the first surface to the second surface and the semiconductor is secured to the substrate via adhesive in the hole.
Abstract:
A method for fabricating a MEMS-IC device structure can include receiving a CMOS substrate comprising a plurality of CMOS circuits and a surface portion. A MEMS substrate having at least one MEMS device can be received and coupled to the CMOS substrate. The MEMS substrate and the surface portion of the CMOS substrate can be encapsulated with a molding material, which forms a top surface. A first plurality of vias can be created in the molding material from the top surface to the surface portion of the CMOS substrate. A conductive material can be disposed within the first plurality of vias such that the conductive material is electrically coupled to a portion of the CMOS substrate. A plurality of interconnects can be formed from the conductive material to the top surface of the molding material and a plurality of solder balls can be formed upon these interconnects.
Abstract:
A method of forming a semiconductor device having through molding vias comprises eutectic bonding a capping wafer and a base wafer to form a wafer package. The base wafer comprises a first chip package portion, a second chip package portion, and a third chip package portion. The capping wafer comprises a plurality of isolation trenches and a plurality of separation trenches having a depth greater than the isolation trenches with respect to a same surface of the capping wafer. The method also comprises removing a portion of the capping wafer exposing a first chip package portion contact, a second chip package portion contact, and a third chip package portion contact. The method further comprises separating the wafer package to separate the wafer package into a first chip package, a second chip package, and a third chip package.
Abstract:
A method embodiment includes providing a micro-electromechanical (MEMS) wafer including a polysilicon layer having a first and a second portion. A carrier wafer is bonded to a first surface of the MEMS wafer. Bonding the carrier wafer creates a first cavity. A first surface of the first portion of the polysilicon layer is exposed to a pressure level of the first cavity. A cap wafer is bonded to a second surface of the MEMS wafer opposite the first surface of the MEMS wafer. The bonding the cap wafer creates a second cavity comprising the second portion of the polysilicon layer and a third cavity. A second surface of the first portion of the polysilicon layer is exposed to a pressure level of the third cavity. The first cavity or the third cavity is exposed to an ambient environment.
Abstract:
A placing member is configured to be supported from an outside by a terminal electrically connected to a terminal electrode, and an X-axis-direction extended portion, a Y-axis-direction extended portion, and a Z-axis-direction extended portion are provided in the terminal. This configuration provides an angular velocity sensor, in which a problem such that Y-axis-direction and Z-axis-direction vibrations applied from the outside cannot be damped is eliminated, and all the vibrations in three axis directions can be damped.
Abstract:
A micromechanical sensor device includes an evaluation circuit formed in a first substrate, and an MEMS structure which is situated in a cavity delimited by a second substrate and a third substrate, the MEMS structure and the second substrate being situated on top of each other, the MEMS structure being functionally connected to the evaluation circuit via a contact area, the contact area between the MEMS structure and the first substrate being situated essentially centrally on the second substrate and essentially centrally on the first substrate and has an essentially punctiform configuration, proceeding radially from the contact area, a clearance being formed between the first substrate and the second substrate.
Abstract:
A method for manufacturing a die assembly, including the steps of: bonding a first wafer of semiconductor material to a second wafer, the second wafer including a respective semiconductor body having a respective initial thickness and forming an integrated electronic circuit; and subsequently reducing the initial thickness of the semiconductor body of the second wafer; and subsequently bonding the second wafer to a third wafer, the third wafer forming a micro-electromechanical sensing structure.