Abstract:
A light field sensor for a 4D light field camera has a layer of nanoscale resonator detector elements, such as silicon nanoshells, below a layer of dielectric microlenses. By taking advantage of photonic nanojets in the microlenses and circulating resonances in nanoshells, the light field camera sensor achieves improved sensitivity, pixel density, and directional resolution even at large angles of incidence.
Abstract:
The amount of light incident on a photoelectric conversion element is increased while stray light from a backlight below a light-transmitting substrate is prevented from being incident on the photoelectric conversion element. A light-blocking film is formed with a color filter covering a photoelectric conversion element over a light-transmitting substrate and a color filter covering a photoelectric conversion element in an adjacent pixel which overlap each other at the side with respect to the direction in which light travels. In addition, by providing a microlens over the color filter, light which is conventionally not detected is collected to a photoelectric conversion element, and accordingly the amount of light incident on the photoelectric conversion element is increased.
Abstract:
A method for measuring intensity distribution of light includes a step of providing a carbon nanotube array located on a surface of a substrate. The carbon nanotube array has a top surface away from the substrate. The carbon nanotube array with the substrate is located in an inertia environment or a vacuum environment. A light source irradiates the top surface of the carbon nanotube array, to make the carbon nanotube array radiate a visible light. A reflector is provided, and the visible light is reflected by the reflector. An imaging element images the visible light reflected by the reflector, to obtain an intensity distribution of the light source.
Abstract:
A goniophotometer includes an arc reflector; a holder for positioning a light source at the center of the arc reflector; a stationary detector substantially disposed at the center of the arc reflector and aimed at an arc reflective surface of the reflector; a driving device for rotating the holder with respect to the reflector and the detector about an axis of the light source; and a computing unit configured to convert a detection result of the detector into a measurement value.
Abstract:
Mapping apparatus includes a transmitter, which emits a beam comprising pulses of light, and a scanner, which is configured to scan the beam, within a predefined scan range, over a scene. A receiver receives the light reflected from the scene and to generate an output indicative of a time of flight of the pulses to and from points in the scene. A processor is coupled to control the scanner so as to cause the beam to scan over a selected window within the scan range and to process the output of the receiver so as to generate a 3D map of a part of the scene that is within the selected window.
Abstract:
An optical system for use in an Earth-orbiting satellite includes a plurality of image sensors disposed on a focal plane having a reference axis orthogonal thereto, optics configured to focus incident light onto the image sensors, a piezoelectric actuator coupled to the image sensors and configured to translate the image sensors in at least two axes each orthogonal to the reference axis, and at least one controller operably coupled to the plurality of image sensors and the piezoelectric actuator. The image sensors are configured to generate at least one image frame from light detected by the plurality of image sensors, the image frame including a target star and at least one guide star. The controller is configured to stabilize the position of the target star by adjusting the position of the piezoelectric actuator based on the changes in the position of the guide star.
Abstract:
A video calibration device comprising an elongated image tube having a length, a first opening at one end of the image tube and a second opening at the opposite end of the image tube. The device includes an elongated sensor tube having a length, a first opening at one end of the sensor tube and a second opening at the opposite end of the sensor tube. The first opening of the sensor tube is adapted to support a video calibration sensor. A video calibration sensor is disposed in the first opening of the sensor tube. The sensor tube is sealingly secured to the image tube at an angle whereby the second opening of the sensor tube and the second opening of the image tube are substantially juxtaposed.
Abstract:
We describe methods and apparatus for high-speed high-contrast imaging one-, two- and three-dimensional imaging enabled by differential interference contrast time encoded amplified microscopy of transparent media without the need for chemical staining, that are suitable for a broad range of applications from semiconductor process monitoring to blood screening. Our methods and apparatus build on a unique combination of serial time-encoded amplified microscopy (STEAM) and differential interference contrast (DIC) microscopy. These methods and apparatus are ideally suited for identification of rare diseased cells in a large population of healthy cells and have the potential to revolutionize blood analysis and pathology including identification of cancer cells, such as Circulating Tumor Cells (CTC) in early stage disease.
Abstract:
An adjustable spectrum LED solar simulator method and system which provides power to LEDs, senses the LED output, compares the LED output to a predetermined norm, and adjusts the LED outputs accordingly. An adjustable spectrum LED solar simulator system includes a multiplicity of LEDs of a number of different color wavelength ranges, an LED driver system for providing power to the LEDs, a sensor system for sensing the output of the LEDs and a controller responsive to the sensor system for comparing the color spectrum of the output of the LEDs to a desired solar spectrum and enables the driver system to adjust the power to the LEDs to more closely match the desired solar spectrum. The solar simulator system may include a modulator structure of hierarchical assemblies. Solar simulator calibration is also disclosed.
Abstract:
The invention relates to a beam line (30) for a source of extreme ultraviolet (EUV) radiation, wherein a EUV-radiating plasma is generated by irradiating droplets of a suitable target material with a focused laser beam (5) at a plasma generation point, said beam line (30) comprising within a vacuum chamber (7): a beam delivery system (2) comprising a focusing lens and means for cooling and shielding said focusing lens; a EUV mirror collector (1), which collects and focuses the radiated EUV in a EUV beam (6) at an intermediate focus (IF); a beam dump (3) capable of damping at least a portion of the laser beam (5) without imposing a shadow on the collected and focused EUV beam (6); and an intermediate focus module (4) for blocking particles from leaving the vacuum chamber (7) with the EUV beam (6).