Abstract:
A device for making accurate, reproducible light reflectance measurements on an optically nonuniform specimen comprises means for holding the specimen in a fixed position. In one embodiment the specimen is illuminated by light sources that are arranged at acute angles relative to the specimen and (360.degree./N.+-.1.degree.) apart in azimuth, where N=the total number of light sources. The light sources are sequentially energized and deenergized to illuminate the specimen. A light detector receives light reflecting from the surface and generates an electrical signal, which is subsequently processed. In another embodiment the light sources are arranged in pairs in which the two light sources in a pair are simultaneously energized and deenergized and the pairs are sequentially energized and deenergized. A method for measuring reflected light is also provided. The device and method are useful for making biochemical assays with reagent test strips by measuring the tone of coloration of the strips after treatment with a target substance being examined.
Abstract:
Blood constituents such as red cells, white cells, and platelets are centrifuged into layers in a capillary tube and the true extent of one or more of the layers is measured photometrically. Each layer to be measured is optically scanned by a sequence of scanning operations with the actual extent of each layer traverse being recorded in a computer. After each layer has been completely circumferentially scanned and each traverse recorded, the computer determines the true average axial dimension for each layer and computes, through prior input, the actual constituent count for each constituent layer.
Abstract:
A system and method for performing UV LED-based absorption detection for capillary liquid chromatography for detecting and quantifying compounds in a liquid, wherein a simplified system eliminates the need for a beam splitter and a reference cell by using a stable UV source, and power requirements are reduced, resulting in a portable and substantially smaller system with relatively low detection limits.
Abstract:
Systems and methods for controlling fluids in microfluidic systems are generally described. In some embodiments, control of fluids involves the use of feedback from one or more processes or events taking place in the microfluidic system. For instance, a detector may detect one or more fluids at a measurement zone of a microfluidic system and one or more signals, or a pattern of signals, may be generated corresponding to the fluid(s). In some cases, the signal or pattern of signals may correspond to an intensity, a duration, a position in time relative to a second position in time or relative to another process, and/or an average time period between events. Using this data, a control system may determine whether to modulate subsequent fluid flow in the microfluidic system. In some embodiments, these and other methods can be used to conduct quality control to determine abnormalities in operation of the microfluidic system.
Abstract:
The invention related to an apparatus for illuminating objects, having an emitting surface and at least two illumination devices, wherein the at least two illumination devices are arranged and designed to generated at least two different illumination distributions on the at least one emitting surface.
Abstract:
An imaging system for imaging a sample in a medium carried in a container as an imaging object, in which the imaging system includes an imager which obtains an original image by imaging the imaging object; and a data processor which generates multi-gradation image data by performing a gradation correction on the original image, wherein the data processor associates a luminance value corresponding to a luminance of the medium in the original image with a maximum gradation value in the gradation correction.
Abstract:
A multifocal rain sensor includes: at least one light emitting unit configured to output light; a first reflective plate corresponding to the at least one light emitting unit and disposed at a position spaced apart from the at least one light emitting unit by a predetermined distance; a glass part reflecting light after the light is reflected by the first reflective plate and forming a sensing region; a second reflective plate re-reflecting the light reflected by the glass part; and a light receiving unit configured to receive the light reflected by the second reflective plate. The second reflective plate includes a multifocal reflective plate having a plurality of focuses based on a vertical height of incident light that varies according to a change in thickness of the glass part.
Abstract:
Certain embodiments of the invention are directed to evaluating and identifying cells by recording and interpreting a time-dependent signal produced by unique cell respiration and permeability attributes of isolated viable cells.
Abstract:
This disclosure is generally directed to systems for imaging polarization properties of optical-material samples. As one aspect, there is provided a system for precise, simultaneous imaging of both the in-plane and out-of-plane birefringence properties of sample material over a wide range of incidence angles. The spatially resolved imaging approach described here is amenable to determination of a wide range of polarimetric properties, in addition to the in-plane and out-of-plane birefringence measure discussed as a preferred embodiment.
Abstract:
Certain embodiments are directed to a low-cost battery-powered spectrophotometric system (BASS) coupled with a microfluidic chip for POC analysis, as well as methods of using the same.