Abstract:
A digital IR gas analyzer comprises a sample cell having a conical shaped interior wall and a filter wheel provided with HC, CO and CO2 interference filters. The filter wheel and IR detector are temperature stabilized. The HC, CO and CO2 gas samples are normalized to a precision reference voltage. The normalized samples are digitized and processed, i.e., for linearization, cross-talk correction and zero drift temperature compensation, by a digital processor. The processed samples are then converted to analog to drive HC, CO and CO2 meters. HC, CO and CO2 gas channels are zeroed simultaneously and calibrated automatically in response to control panel switches.
Abstract:
A power station boiler condensate water monitor employs a light-scatter cell for the detection of oil and/or particulates in the water. In order to determine background scatter levels, provision is made to alternatively pass clean water through the cell (FLUSH). The offset voltages obtained from the detector outputs when clean water is employed are compensated for differences in temperature between the boiler condensate water and the clean water before substraction from the detector outputs when boiler condensate water is employed. The monitor is capable of detecting oil levels of less than 2 parts per million.
Abstract:
An improved grain quality analyzer, for analyzing the percentage concentration of various constituents, e.g. protein and water, in a grain sample, photo-optically measures the change in the optical density of the sample, .DELTA. OD, in a range of characteristic wavelengths and, for protein, in a range of neutral wavelengths and uses these measured values to compute the percentage concentration of the constituents.A grain sample is irradiated with light, the wavelength of which sweeps across the infrared light-spectrum including a range of wavelengths termed characteristic wavelengths, and, for protein, a range of wavelengths termed neutral wavelengths. The characteristic wavelengths are those wavelengths at which the optical characteristics of the irradiated sample, that is, the optical density, reflectivity, transmissivity, and/or absorption, are known to vary as a function of the concentration of the measured constituent, and, for the protein measurement, the neutral wavelengths are those wavelengths at which the optical characteristics are substantially independent of the concentration of the protein.In the preferred embodiment, photo-optical sensors measure the light reflected from the sample and provide output signals indicative of the optical density of the sample as a function of the wavelength of the irradiating light. Control and computing means sample the sensor output at spaced apart points in the range of characteristic wavelengths and in the range of neutral wavelengths to provide signals representative of the optical characteristics of the sample. Computing circuitry computes the percentage concentration of water and, for protein, computes the percentage concentration using an algorithm in accordance with the present invention which eliminates the inaccuracies introduced by light scattering from the sample.
Abstract:
A fiber verification system comprises a computer system and an analyzer in the computer system. The analyzer is configured to identify a test electromagnetic scan for a test sample from a fiber product for use in manufacturing an unconsolidated composite material in a composite material manufacturing system. The test electromagnetic scan is generated by a spectroscopy system. The analyzer is configured to verify whether the fiber product is a selected fiber product selected for use in manufacturing the unconsolidated composite material in the composite material manufacturing system using the test electromagnetic scan and a fiber verifier system.
Abstract:
An analyzing apparatus is provided. The analyzing apparatus may include a spectrum unit acquiring a spectrum related to semiconductor characteristics, and a corrector provided with a model that corrects at least one of noise and uncertainty of a measurement parameter related to the spectrum. The analyzing apparatus may include an evaluator provided to evaluate the uncertainty of the parameter corresponding to a controllable factor of measurement equipment that outputs the spectrum, and an attenuator provided to attenuate the spectral noise on the basis of an uncontrollable factor of the measurement equipment.
Abstract:
A swept frequency fluorometer having a signal processor or processing module configured to: receive signaling containing information about reflected light off one or more fluorescence species-of-interest in a liquid sample that is swept with light having a variable frequency range, the information including a characteristic optical frequency corresponding to a fluorescence species-of-interest in the liquid, and a characteristic/lifetime optical frequency corresponding to a distinct fluorescence lifetime in which the fluorescence species-of-interest remains in an excited state; and provide corresponding signaling containing information about an identity of the fluorescence species-of-interest detected and distinguished from overlapping fluorescence species in the liquid using the characteristic/lifetime optical frequency, based upon the signaling received.
Abstract:
The methods and apparatus provide phase-resolved optical metrology for determining qualities of a substrate and films thereon. Transmitted and reflected signals are coupled using both amplitude and phase information to improve the metrology information obtained from film layers on the substrate.
Abstract:
Disclosed are a device of complex gas mixture detection based on optical-path-adjustable spectrum detection and a method therefor, and the device includes: a light source configured for generating an incident beam and emitting the incident beam into an optical gas cell; the optical gas cell, including a cavity configured for accommodating a gas sample, and a reflection module group configured for reflecting the incident beam and a track arranged in the cavity, where the track is consistent with a light path of the light beam in the cavity; a detector module that is connected with the track in a relatively movable manner and is configured for receiving light beams and obtaining spectral data, where an optical path is changed by moving the detector module relative to the track; and a data acquisition unit that is configured for acquiring the spectral data obtained by the detector module.
Abstract:
Apparatus and methods are described including one or more sensors that are coupled to a toilet bowl, and that are configured to detect one or more urine-related parameters relating to a subject's urine, and at least one computer processor configured to receive the one or more urine-related parameters from the one or more sensors, determine when the subject's urine has an elevated creatinine concentration, and determine a likely cause of the elevated creatinine concentration. Other applications are also described.
Abstract:
Instrument control and data acquisition in advanced analytic systems that utilize optical pulses for sample analysis are described. Clocking signals for data acquisition, data processing, communication, and/or other data handling functionalities can be derived from an on-board pulsed optical source, such as a passively mode-locked laser. The derived clocking signals can operate in combination with one or more clocking signals from a stable oscillator, so that instrument operation and data handling can tolerate interruptions in operation of the pulsed optical source.