Abstract:
In a multi-source radiation generating apparatus including a plurality of combinations of a cathode and a target, an extraction electrode is disposed for a plurality of cathodes in common. When a potential of the extraction electrode is constant, potentials for the cathodes are selectively switched between a cutoff potential which is higher than the potential of the extraction electrode and an emission potential which is lower than the potential of the extraction electrode.
Abstract:
Provided is a high-output X-ray generation tube in which thermal damage to a target is reduced. The X-ray generation tube includes a target, an electron source, and a grid electrode having multiple electron passage apertures disposed between the target and the electron source. A source-side electron beam on the electron source side with respect to the grid electrode has a current density distribution, and the grid electrode has an aperture ratio distribution so that a region of the source-side electron beam in which a current density is largest is aligned with a region of the grid electrode in which an aperture ratio is smallest.
Abstract:
In one embodiment, an X-ray tube is provided. The X-ray tube comprises at least one thermionic cathode configured to generate an electron beam, a target assembly configured to generate X-rays when impinged with the electron beam emitted from the thermionic cathode, a high voltage supply unit for establishing an output voltage across the thermionic cathode and the target assembly for establishing an accelerating electric field between the thermionic cathode and the target assembly and a mesh grid disposed between the thermionic cathode and the target assembly, the mesh grid configured to operate at a voltage so as to lower the electric field applied at the surface of the thermionic cathode. Further, the voltage at the mesh grid is negatively biased with respect to the voltage at the thermionic cathode.
Abstract:
A method for operating an electron beam system is presented. Further, an electron beam system, an X-ray tube and a CT system that implement the presented method are also described. The method includes generating an electron beam in an X-ray tube in an imaging system. Additionally, a current configuration corresponding to a particular view of the imaging system is identified. If the identified current configuration is within a determined range, a duty cycle of the electron beam for the particular view of the imaging system is modulated using pulse width modulation. Further, the modulated electron beam is focused towards a target.
Abstract:
The present invention refers to an X-ray tube of the rotary-anode type which comprises at least one temporarily negatively biased auxiliary grid electrode (119) with an aperture through which an electron beam (115) emitted by a tube cathode's thermoionic electron emitter (111) can pass. As an alternative thereto, the auxiliary grid electrode (119) may also be positively biased so as to enhance electron emission from a thermoionic electron emitter (111). The auxiliary grid electrode may thereby be connected to a supply voltage UAUX of a controllable voltage supply unit by means of a feedthrough cable (120) serving as a feeding line for providing the main control grid (112) with a grid supply voltage UG.
Abstract:
An apparatus for Flash X-ray irradiation of material includes a Flash X-ray source comprised of an electron gun and an anode. The electron gun comprises a field emission cold cathode having an electron emitting surface, and a grid for controlling electron flow from the cathode to the anode. The anode has an electron-receiving main surface and an X-ray emitting, oppositely facing main surface. The X-ray emitting surface, emits X-radiation into an irradiation volume. The X-ray emitting surface of the anode has orthogonally oriented first and second dimensions of greater than 2 millimeters each. A high voltage pulse power supply powers the Flash X-ray source. The electron gun, anode and high voltage pulse power supply are so constructed as to create sufficient X-radiation in said irradiation volume to achieve a desired level of irradiation of material in said volume.
Abstract:
An x-ray imaging system includes a detector positioned to receive x-rays, and an x-ray tube coupled to a mount structure. The x-ray tube is configured to generate x-rays toward the detector and includes a target, a cathode cup, an emitter attached to the cathode cup and configured to emit a beam of electrons toward the target, the emitter having a length and a width, and a one-dimensional grid positioned between the emitter and the target and attached to the cathode cup at one or more attachment points. The one-dimensional grid includes a plurality of rungs that each extend in a direction of the width of the emitter, and the plurality of rungs are configured to expand and contract relative to the one or more attachment points without substantial distortion with respect to the emitter.
Abstract:
An X-ray scanning apparatus comprises a number of multi-focus X-ray tubes (25) spaced around an axis X and arranged to emit X-rays through an object on the axis which are detected by sensors (52). Each tube (25) can emit X-rays from a plurality of source positions. In each scanning cycle, in which each of the source positions in each of the tubes is used once, the ordering of the positions used is arranged so as to minimize the thermal load on the tubes (25). This is achieved by ensuring that each source position is non-adjacent to the previously active one and the next active one.
Abstract:
An X-ray scanning apparatus comprises a number of multi-focus X-ray tubes (25) spaced around an axis X and arranged to emit X-rays through an object on the axis which are detected by sensors (52). Each tube (25) can emit X-rays from a plurality of source positions. In each scanning cycle, in which each of the source positions in each of the tubes is used once, the ordering of the positions used is arranged so as to minimize the thermal load on the tubes (25). This is achieved by ensuring that each source position is non-adjacent to the previously active one and the next active one.
Abstract:
A CT scanner which collects X-ray projection data of a subject and which generates an image in the subject from the projection data, the CT scanner includes tubes which emit X-rays and which include grids to switch emission and stoppage of the X-rays, a unit which generates a high voltage to be supplied to the tubes, a cable which sends the high voltage to each of the tubes, circuits which change potentials of the grids arranged in the tubes, respectively, a control unit which controls the circuits to switch the emission and the stoppage of the X-rays in a pulse manner while the tubes rotate around the subject, detectors arranged to face the tubes, respectively, and a unit which validates an output signal from the detector facing the tube emitting the X-rays and which invalidates an output signal from the detector facing the tube stopping the emission of the X-rays.