Abstract:
An apparatus and method for performing mass spectroscopy uses an ion interface to provide the function of removing undesirable particulates from an ion stream from an atmospheric pressure ion source, such as an electrospray source or a MALDI source, before the ion stream enters a vacuum chamber containing the mass spectrometer. The ion interface includes an entrance cell with a bore that may be heated for desolvating charged droplets when the ion source is an electrospray source, and a particle discrimination cell with a bore disposed downstream of the bore of the entrance cell and before an aperture leading to the vacuum chamber. The particle discrimination cell creates gas dynamic and electric field conditions that enables separation of undesirable charged particulates from the ion stream.
Abstract:
The present invention relates to a method of separating ions having the same mass to charge ratio but different ion mobility characteristics, based on the ion focussing principles of high field asymmetric waveform ion mobility spectrometry. Isomers including gas-phase molecular anions of the amino acids leucine and isoleucine are separable by the method of the present invention. Identification of different conformers of ions at the same charge state, including conformers present at certain charge states of the protein bovine ubiquitin, is also possible using the method of the present invention.
Abstract:
A solution containing nonvolatile salts is pumped from a pump to an electrospray nebulization probe in the LC/MS interface, and spouted out from a tip of the probe into an atmospheric pressure environment in a form of fine liquid droplets having charges. The sample ions contained in the droplets are deflected by a deflector and enter into a mass analysis portion through an ion sampling aperture to be mass analyzed. On the other hand, the nonvolatile salts travel straight without being affected by the deflector, and collide against and are collected on a wall of a particle collector. The collected salts are precipitated in a form of crystals. The collected salts are washed away by spraying a particle washing solution from the washing nozzle. The above-described structure can provide an atmospheric pressure ionization mass spectrometer which can prevent effects of nonvolatile salts on the mass analysis without deteriorating the vacuum condition of the mass analysis portion by the preventing action.
Abstract:
A solution containing nonvolatile salts is pumped from a pump to an electrospray nebulization probe in the LC/MS interface, and spouted out from a tip of the probe into an atmospheric pressure environment in a form of fine liquid droplets having charges. The sample ions contained in the droplets are deflected by a deflector and enter into a mass analysis portion through an ion sampling aperture to be mass analyzed. On the other hand, the nonvolatile salts travel straight without being affected by the deflector, and collide against and are collected on a wall of a particle collector. The collected salts are precipitated in a form of crystals. The collected salts are washed away by spraying a particle washing solution from the washing nozzle. The above-described structure can provide an atmospheric pressure ionization mass spectrometer which can prevent effects of nonvolatile salts on the mass analysis without deteriorating the vacuum condition of the mass analysis portion by the preventing action.
Abstract:
This invention provides an apparatus and method for desolvating and selectively transmitting and focussing ions, including ions produced by electrospray ionization (ESI), based on the ion focussing principles of high field asymmetric waveform ion mobility spectrometry (FAIMS), for introduction into a mass spectrometer. The ion focussing, trapping and desolvating effects of FAIMS, as identified by the inventors, provides high ion transmission efficiency and high sensitivity for the detection of ions. An apparatus comprising an ESI source, a FAIMS device and a mass spectrometer provides a way of desolvating and selectively transmitting highly solvated ions for introduction into a mass spectrometer for analysis.
Abstract:
An ion transmission system for transferring ions from an atmospheric pressure ionization source to an analyzer including a capillary having an input orifice which is indirectly coupled to the ion source.
Abstract:
A method in which cutting of small droplets, neutral particles or photons through to a slit provided between a differential pumping portion and a mass analysis portion is combined with slight deflection of ions just before introduction of the ions into the mass analysis portion so that noises are greatly reduced without reduction of signals to thereby improve the signal-to-noise ratio which is an index of detecting sensitivity or lower limit.
Abstract:
In a mass spectrometer using a sonic spray ion source, a technique of controlling the density of droplets in a nebulized sample solution which is passed into a mass spectrometer at high vacuum to an appropriate value to thereby reduce analysis noises is disclosed. A sample solution in a sample solution injection unit 1 is introduced into a capillary 2 disposed in an ion source 6. A gas is introduced from a gas supply unit 4 by way of a gas pipe 5 into the ion source 6 and is caused to flow along the outer circumferential surface at the top end of the capillary 2 and is jetted out from the orifice 3 as a gas flow into atmospheric air. The sample solution jetted from the top end of the capillary 2 is ionized by the gas flow in the atmospheric air. Fine droplets or ions formed by the sonic spray method are collide against a diffuser 7, droplets and ions reduced for the density by the diffusion pass through the holes 8 disposed in the diffuser 7, and pass from the sample orifice 10 into a mass spectrometer 11 and mass analyzed. Provision of the diffuser 7 can suppress generation of analysis noises caused by the clustering phenomenon resulting from introduction of droplets or ions at high density into the mass spectrometer 11, thereby enabling to conduct analysis at high S/N ratio.
Abstract:
An interface apparatus for introducing a sample for analysis from a liquid flow into a mass spectrometer as a plurality of charged droplets is disclosed. The interface apparatus includes interface body which defines a spray chamber and an orifice, a spray means defining a liquid-flow inlet channel and an excess-sample-flow exit channel and having an open end disposed inside the spray chamber, and a voltage device for applying a voltage to the sample to form a plurality of charged droplets. The charged droplets pass through the orifice in the interface body and are introduced into a mass spectrometer for analysis. The interface includes a valve for regulating the flow of sample into the sample inlet channel and a device for imposing a pressure gradient on the sample at the open end which induces the sample to flow from the sample inlet channel through the excess sample outlet channel.
Abstract:
A mass spectrometer comprising an ionization region for ionizing a sample under atmospheric pressure, an ion sampling aperture for introducing ions generated by the ionization region into a vacuum, and a mass analysis region for mass analyzing the ions on the basis of a high-frequency electric field, wherein: an electrostatic lens for deflecting the direction of the movement of the ion from the center axis of the ion sampling aperture is disposed between the ionization region and the mass analysis region; the center axis of an aperture for introducing ions into the mass analysis region and the center axis of the ion sampling aperture are disposed so as to be shifted in parallel from each other; and the center axis of the ion sampling aperture and the center axis of a cylindrical inner electrode constituting the electrostatic lens are disposed so as to be shifted in parallel from each other to thereby prevent charged droplets or droplets without charge from flowing into the mass analysis region.