Abstract:
It is an objective of this invention to obtain: a composition superior in processability, dielectric properties, heat resistance, and adhesiveness by controlling phase separation of a 1,2-polybutadiene resin composition without deterioration of dielectric properties exhibited in high-frequency regions; and a multilayer printed wiring board using the same. This invention relates to a polybutadiene resin composition, comprising: a crosslinking component (A) comprising repeating units represented by the following formula (1) and having a number average molecular weight of 1000 to 20000; a radical polymerization initiator (B), the one-minute half-life temperature of which is 80° C. to 140° C.; and a radical polymerization initiator (C), the one-minute half-life temperature of which is 170° C. to 230° C.; wherein 3 to 10 parts by weight of the component (B) and 5 to 15 parts by weight of the component (C) are contained relative to 100 parts by weight of the component (A). The invention also relates to a prepreg, a laminate, and a printed wiring board, which are produced using the same.
Abstract:
Highly reliable interconnections for microelectronic packaging. In one embodiment, dielectric layers in a build-up interconnect have a gradation in glass transition temperature; and the later applied dielectric layers are laminated at temperatures lower than the glass transition temperatures of the earlier applied dielectric layers. In one embodiment, the glass transition temperatures of earlier applied dielectric films in a build-up interconnect are increased through a thermosetting process to exceed the temperature for laminating the later applied dielectric films. In one embodiment, a polyimide material is formed with embedded catalysts to promote cross-linking after a film of the polyimide material is laminated (e.g., through photo-chemical or thermal degradation of the encapsulant of the catalysts). In one embodiment, the solder resist opening walls have a wettable layer generated through laser assisted seeding so that there is no gap between the solder resist opening walls and no underfill in the solder resist opening.
Abstract:
There are provided a resin composition comprising a crosslinking component with a weight average molecular weight of 1,000 or less having a plurality of styrene groups and represented by the following formula: wherein R is a hydrocarbon skeleton, each of R1s is a hydrogen atom or a hydrocarbon group, each of R2, R3 and R4 is a hydrogen atom or an alkyl group, m is an integer of 1 to 4, and n is an integer of 2 or more, at least one high-molecular weight compound, an inorganic filler, and at least one treating agent for said inorganic filler; its cured product; and a prepreg, a laminate sheet having a conductor layer, and a multilayer printed wiring board obtained by processing the conductor layer of the laminate sheet into wiring.
Abstract:
There are provided a resin composition comprising a crosslinking component with a weight average molecular weight of 1,000 or less having a plurality of styrene groups and represented by the following formula: wherein R is a hydrocarbon skeleton, each of R1s is a hydrogen atom or a hydrocarbon group, each of R2, R3 and R4 is a hydrogen atom or an alkyl group, m is an integer of 1 to 4, and n is an integer of 2 or more, at least one high-molecular weight compound, an inorganic filler, and at least one treating agent for said inorganic filler; its cured product; and a prepreg, a laminate sheet having a conductor layer, and a multilayer printed wiring board obtained by processing the conductor layer of the laminate sheet into wiring.
Abstract:
A method for manufacturing a multilayer circuit board, in which adhesion between electrical insulating layer and a conductive layer is high and the patternability is also excellent, is provided. The method for manufacturing the multilayer circuit board comprises a step of; 1) bringing the surface of the electrical insulating layer produced by setting a setting resin composition containing an alicyclic olefin polymer or an aromatic polyether polymer into contact with a permanganic acid compound or a plasma, 2) dry-plating the surface and then wet- or dry-plating the surface, 3) dry-plating the surface several times and then wet-plating the surface, or 4) plating the surface and then annealing it, so as to form a conductive layer.
Abstract:
The invention is a process for building-up printed wiring boards using metal foil coated with toughened benzocyclobutene-based dielectric polymers. The invention is also a toughened dielectric polymer comprising benzocyclobutene-based monomers or oligomers, ethylenically unsaturated polymer additive, and, optionally, a photoactive compound.
Abstract:
Conductive materials that have low coefficients of thermal expansion (CTEs) and that are used for power and ground planes are disclosed. Fibrous materials (such as carbon, graphite, glass, quartz, polyethylene, and liquid crystal polymer fibers) with low CTEs are metallized to provide a resultant conductive material with a low CTE. Such fibers may be metallized in their individual state and then formed into a fabric, or these materials may be formed into a fabric and then metallized or a combination of both metallizations may be used. In addition, a graphite or carbon sheet may be metallized on one or both sides to provide a material that has a low CTE and high conductivity. These metallized, low CTE power and ground planes may be laminated with other planes/cores into a composite, or laminated into a core which is then laminated with other planes/cores into a composite. The resultant composite may be used for printed circuit boards (PCBs) or PCBs used as laminate chip carriers.
Abstract:
Conductive materials that have low coefficients of thermal expansion (CTEs) and that are used for power and ground planes are disclosed. Fibrous materials (such as carbon, graphite, glass, quartz, polyethylene, and liquid crystal polymer fibers) with low CTEs are metallized to provide a resultant conductive material with a low CTE. Such fibers may be metallized in their individual state and then formed into a fabric, or these materials may be formed into a fabric and then metallized or a combination of both metallizations may be used. In addition, a graphite or carbon sheet may be metallized on one or both sides to provide a material that has a low CTE and high conductivity. These metallized, low CTE power and ground planes may be laminated with other planes/cores into a composite, or laminated into a core which is then laminated with other planes/cores into a composite. The resultant composite may be used for printed circuit boards (PCBs) or PCBs used as laminate chip carriers.
Abstract:
A low dielectric constant printed circuit board includes: a low dielectric constant porous polymer layer having holes therethrough, the porous layer having pores; and a patterned metallization layer over surfaces of the low dielectric constant porous polymer layer and surfaces of the holes, the patterned metallization layer not significantly protruding into the pores of the porous layer.
Abstract:
An electrical substrate material is presented comprising a resin matrix which includes a thermosetting polybutadiene or polyisoprene resin, an ethylene propylene rubber, and optionally a thermoplastic unsaturated butadiene- or isoprene-containing polymer; a particulate filler, a flame retardant additive, a curing agent, and a woven or unwoven fabric. The presence of the ethylene propylene rubber enhances the heat age properties of the substrate material, particularly the dielectric strength and the mechanical properties, while other electrical, chemical, and mechanical properties of the material are not adversely effected.